TABLE OF CONTENTS

VOLUME 2

Division 21 – Fire Suppression
- Fire Suppression General Requirements... 21 00 00

Division 22 – Plumbing
- Plumbing General Requirements... 22 00 00
- Sleeves and Sleeve Seals for Plumbing Piping.. 22 05 17
- Escutcheons for Plumbing Piping.. 22 05 18
- Meters and Gages for Plumbing Piping .. 22 05 19
- Ball Valves for Plumbing Piping.. 22 05 23.12
- Check Valves for Plumbing Piping... 22 05 23.14
- Hangers and Supports for Plumbing Piping and Equipment ... 22 05 29
- Vibration Controls for Plumbing Piping and Equipment ... 22 05 48.13
- Identification for Plumbing Piping and Equipment ... 22 05 53
- Plumbing Piping Insulation... 22 07 19
- Domestic Water Piping .. 22 11 16
- Domestic Water Piping Specialties... 22 11 19
- Domestic Water Pumps... 22 11 23
- Sanitary Waste and Vent Piping ... 22 13 16
- Sanitary Waste Piping Specialties... 22 13 19
- Fuel-Fired, Domestic-Water Heaters ... 22 34 00
- Commercial Water Closets... 22 42 13.13
- Commercial Urinals.. 22 42 13.16
- Commercial Lavatories... 22 42 16.13
- Commercial Sinks... 22 42 16.16
- Commercial Showers.. 22 42 23
- Drinking Fountains ... 22 47 13

Division 23 – Mechanical
- Mechanical General Requirements... 23 00 00
- Escutcheons for HVAC Piping... 23 05 18
- Meters and Gages for HVAC Piping.. 23 05 19
- Ball Valves for HVAC Piping... 23 05 23.12
- Check Valves for HVAC Piping... 23 05 23.14
- Hangers and Supports for HVAC Piping and Equipment .. 23 05 29
- Vibration Controls for HVAC ... 23 05 48.13
- Identification for HVAC Piping and Equipment ... 23 05 53
- Testing, Adjusting and Balancing for HVAC ... 23 05 93
- Duct Insulation.. 23 07 13
- HVAC Piping Insulation.. 23 07 19
Control Dampers .. 23 09 23.12
Facility Natural-Gas Piping .. 23 11 23
Hydronic Piping .. 23 21 13

Underground Hydronic Piping .. 23 21 13.13
Hydronic Pumps .. 23 21 23
Metal Ducts .. 23 31 13

Air Duct Accessories .. 23 33 00
Diffusers, Registers and Grilles 23 37 13
Wall and Ceiling Unit Heaters 23 82 29.19

Division 26 – Electrical
 Electrical General Requirements .. 26 00 00
 Low-Voltage Electrical Power Conductors and Cables 26 05 19
 Grounding and Bonding for Electrical Systems .. 26 05 26

Hangers and Supports for Electrical Systems .. 26 05 29
Raceway and Boxes for Electrical Systems .. 26 05 33
Vibration and Seismic Controls for Electrical Systems .. 26 05 48

Identification for Electrical Systems .. 26 05 53
Overcurrent Protective Device Short-Circuit Study 26 05 72
Overcurrent Protective Coordination Study .. 26 05 73

Overcurrent Protective Device ARC-Flash Study .. 26 05 74
Switchboards .. 26 24 13
Panelboards .. 26 24 16

Underground Electric Service .. 26 27 13
Wiring Devices .. 26 27 26
Fuses .. 26 28 13

Enclosed Switches and Circuit Breakers .. 26 28 16
Interior Lighting .. 26 51 00
Exterior Lighting .. 26 56 00

Division 28 – Electronics Safety Security
 Digital Addressable Voice Evacuation Fire Alarm System 28 31 11

Division 32 – Site Work
 Site Work
 West Yellowstone Public Works Standards

Division 33 - Geotechnical Report
 Geotechnical Report

END OF TABLE OF CONTENTS
PART 1 - GENERAL

1.1 SCOPE

A. Furnish and install an automatic sprinkler system to protect as indicated herein and as shown on the Drawings. Connect system to a water supply of sufficient pressure to ensure full and sustained water discharge immediately from sprinkler heads when opened by fire at rated heat temperatures. Water supply shall conform to NFPA water supply requirements with considerations given to the reliability of the public water supply, taking into account probable minimum pressure conditions. The Contractor shall verify site water pressure before submitting shop drawings.

B. All portions of the systems shall be installed in accordance with the drawings, details, and specifications and as required by jurisdictional authorities and codes. Jurisdictional authorities and codes shall take precedence over plans, details and specifications in the event of a dispute between the requirements of contract documents and jurisdictional authorities or codes.

C. The position is taken that the Owner is entitled to a project which meets or exceeds the minimum requirements of nationally recognized fire protection standards. All efforts and installations shall be directed toward this end. All deficiencies as noted by fire rating bureaus, insurance service offices or jurisdictional authorities shall be corrected. No extra charges will be allowed on this account.

D. The intent of these specifications is to describe the complete systems to be installed, including minor details of work or materials not specifically mentioned or shown, but necessary for the successful operation and completion of the installation.

E. Work to be performed under this section shall include, but not be limited to the following:
 1. Excavation, backfill and compaction for the fire system supply.
 2. Automatic fire sprinkler systems.
 a. Wet pipe flow switch system.
 1) Pipe and fittings.
 2) Hangers and supports.
 3) Earthquake bracing.
 4) Valves.
 5) Alarms.
 6) Flow Switches.
 7) Specialties.
 b. Dry pipe system.
 1) Pipe and fittings.
 2) Hangers and supports.
 3) Earthquake bracing.
 4) Valves.
 5) Alarms.
6) Pressure & Tamper Switches.
7) Specialties.

F. The following areas shall be furnished with an automatic fire protection system of type or types as required:
1. The entire new building
2. All combustible canopies.
3. The entire building addition.

1.2 RELATED WORK

A. All work performed under this section of the specifications shall be subject to the requirements of both the General and Special Conditions and the Mechanical Specification.

1.3 REGULATORY AGENCIES

A. The term jurisdictional authority used in this section of the specification shall include, as applicable, but not be limited to the following:
1. Local Building Department and Fire Department.
2. Montana Department of Health
4. Insurance Services Office or Insuring Authority having jurisdiction.
5. Owner.

B. The design and installation of all systems of fire protection shall conform to all requirements of applicable codes and publications herein defined:
1. International Building Code
2. International Fire Code
3. NFPA 13
4. NFPA 10
5. NFPA 17
6. NFPA 101
7. All State and local ordinances
8. Underwriters’ Laboratories
9. Industrial Risk Insurers/Factory Mutual
10. American Society of Testing Materials
11. American National Standards Institute
12. Occupation

1.4 SUBMITTALS

A. The successful Contractor shall provide submittal data as required under other portions of this specification. Submittals shall conform to the instructions set forth in the General and Special Conditions of these specifications entitled Shop Drawings and Submittals.

B. Submit shop drawings (floor plans - detailed working drawings), showing dimensions, ducts, lights, or other items affecting the fire protection systems to jurisdictional agencies for review and approval, including all Authorities Having Jurisdiction (including, but not limited to the local or State Fire Marshall, Montana Department of
Healthtor. All items identified in NFPA 13 for proper working drawings shall be complied with. The Architect or Engineer will reject all submittals not in compliance. Submit all necessary shop drawings to authorities having jurisdiction. Concurrently, Electronic submittals shall be submitted to the Architect. After approval from jurisdictional agencies have been returned to the Contractor, they shall be submitted to the Architect for final acceptance. These final acceptance sets shall have all agencies' stamps of review and acceptance. Where there is conflict between the Contract Drawings and/or Specifications, and the recommendations of the jurisdictional authorities, the conflict shall be brought to the attention of the Architect at least ten (10) days prior to bidding or be resolved at no cost to the Owner.

C. Architect and Engineer's review will be for general location only. It will be the Contractor's responsibility to check his drawings for interference and to do shop fabrication from measurements taken at the job site.

D. Work on the project shall not begin until plans have been reviewed by the Architect/Engineer.

E. Electronic version of catalog information shall be submitted for approval for all materials provided.

F. A charge of $50.00 per drawing will be charged for electronic drawings.

G. The preparation of all shop drawings and hydraulic calculations shall be accomplished by a Registered Engineer, licensed in the State of Montana, if required by local authorities. At a minimum, work must be done by a NICET Level 3 technician.

1.5 JOB CONDITIONS

A. The Contractor shall investigate the structural, mechanical, electrical, and finished conditions affecting the piping, and shall arrange the equipment accordingly; furnishing required fittings, offsets and accessories. Route fire protection piping to avoid interference with ductwork and drain piping. In the event it becomes necessary to make field changes in pipe locations due to building construction, the Contractor shall consult with the Architect before making any changes. Any such changes required shall be made without added cost to the Owner.

B. The Contractor shall determine, and be responsible for, the proper locations and type of inserts for hangers, chases, sleeves, and other openings in the construction required for fire protection work, and shall obtain this information well in advance of the construction progress to avoid delay of the work.

C. The drawings indicate approximate locations of sprinkler equipment. Contractor is responsible for final locations and routing.

D. All fees and permits specifically required for fire protection work, not obtained by others as specified elsewhere shall be applied for and paid for by this Contractor.
E. All systems of fire protection shall be installed by a licensed (for the location of installation) Fire Protection Contractor, fully experienced in fire protection installation as specified herein.

F. Fire Protection Contractors may be required to provide in writing, specific information as to successfully completed projects and references to show cause as to why they should be considered acceptable to the Architect.

1.6 RECORD DRAWINGS

A. One approved set of drawings shall be maintained on the job at all times.

B. One reproducible set of As-Built drawings shall be provided to the Architect upon completion of the work.

1.7 OPERATION AND MAINTENANCE MANUALS

A. Three (3) sets of operating and maintenance instructions shall be provided the Owner upon completion. Manuals shall include, as a minimum, the following:
 1. As-Built Drawings
 2. NFPA 25
 3. Catalog cut sheets of all materials installed
 4. Equipment maintenance manuals

1.8 TRAINING

A. The Fire Protection Contractor shall instruct the Owner in the operation of the systems. Instruction shall continue until the Owner is fully satisfied that he understands the operation of his system.

1.9 GUARANTEES AND WARRANTIES

A. The Fire Protection Contractor shall guarantee to the Owner in writing, all equipment and workmanship for a period of one (1) year after the fire protection system has been placed in continuous service and has been accepted by all authorities having jurisdiction.

B. The Fire Protection Contractor shall not be held responsible for improper or negligent maintenance by the Owner after operating and maintenance indoctrination has been given the Owner.

END OF SECTION 21 00 00
SECTION 22 00 00 - PLUMBING GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 MECHANICAL REQUIREMENTS

A. The mechanical requirements are supplemental to the General Requirements of these Specifications. The Mechanical Sections shall apply to phases of the work specified, shown on the Drawings, or required to provide for the complete installation of Mechanical Systems for this project.

B. The work shall include all items, articles, materials, operations and methods listed, mentioned, or scheduled in these specifications and the accompanying drawings. All material, equipment, and labor shall be furnished together with all incidental items required by good practice to provide the complete systems described.

C. Examine and refer to all Architectural, Civil, Structural, Electrical, Utility, Landscape and Mechanical drawings and specifications for construction conditions which may affect the mechanical work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.

D. See general requirements for listed Alternate Bids. Note alternates listed and include any changes in work and price required to meet the requirements of the respective alternate.

1.2 CODES AND STANDARDS

A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following Organizations:

1. American Society of Mechanical Engineers (ASME)
2. American Water Works Association (AWWA)
3. National Electrical Code (NEC)
4. National Electrical Manufacturers Association (NEMA)
5. National Fire Protection Association (NFPA)
6. International Plumbing Code
7. Occupational Safety & Health Act (OSHA)
8. Plastic Pipe Institute (PPI)
9. Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
10. International Mechanical Code (IMC)
12. Requirements of the Serving Utility Company
13. Local and State Codes and Ordinances
14. SMACNA Seismic Manual
1.3 FEES AND PERMITS

A. The Mechanical Contractor shall pay all fees and arrange for all permits required for work done under his contract and under his supervision by subcontract.

B. All usage contracts between the Owner and the serving utilities company, such as membership and usage charges or fees, etc., for the purpose of obtaining the services for the utility company shall be applied for and paid for by the Owner.

C. All permits and fees for connection to the utility, including inspection and staking costs imposed by the utility company or required for proper installation, and all necessary manholes, encasements, valves, service boxes, meters, meter housings or vaults complete as required by the utility company of jurisdictional agency, shall be applied for and paid by the Mechanical Contractor.

D. Exception: The gas service from the main to and including the gas meter will be furnished and installed by the gas company and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

A. Manufacturers trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed must have prior approval. Written prior approval must be obtained from the Architect/Engineer ten (10) days prior to bid opening. Requests are to be submitted sufficiently ahead of the deadline to give ample time for examination. The items approved will be listed in an addendum and only this list of equipment will be accepted in lieu of specified products. Submittals must indicate the specific item or items to be furnished in lieu of those specified, together with complete technical and comparative data on specified items and proposed items. See list of prior approved manufacturers at end of this section.

B. Mechanical equipment may be installed with manufacturer’s standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.

C. This Contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.

D. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by manufacturer unless herein specified to the contrary.

E. This Contractor shall make the required arrangement with General Contractor for the introduction into the building of equipment too large to pass through finished openings.

F. Store materials and equipment indoors at the job site or, if this is not possible, store on raised platforms and protect from the weather by means of waterproof covers. Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.
1.5 INTENT OF DRAWINGS

A. The drawings are partly diagrammatic and do not necessarily show exact location of piping and ductwork unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining lineal runs of piping or ductwork, nor shall they be used for shop drawings for piping and ductwork fabrication or ordering. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 RESPONSIBILITY

A. The Mechanical Contractor shall be responsible for the installation of a satisfactory and complete system in accordance with the intent of the drawing and specifications. Provide, at no extra cost, all incidental items required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.

B. The drawings do not attempt to show complete details of the building construction which affect the mechanical installation; and reference is therefore required to the Architectural, Civil, Structural, Landscape and Electrical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.

C. Location of mechanical system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and his decision shall govern. Necessary changes shall be made at the Contractor’s expense.

D. Determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves, and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed.

E. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.

F. Take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor’s risk.

G. At all times during the performance of this Contract, properly protect work from damage and protect the Owner’s property from injury of loss. Make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. Adequately protect adjacent property as provided by law and the Bidding Documents. Provide and maintain passageways, guard fences, lights and other facilities for protection required by Public Authority or Local conditions.
H. The Contractor shall be responsible for damages due to the work of their Contractors, to the building or its contents, people, etc.

1.7 REVIEW

A. All work and material is subject to review at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform with these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at the Contractor’s expense.

1.8 WORKMANSHIP

A. GENERAL

1. Work under this contract shall be performed by workmen skilled in the particular trade, including work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.

B. EXCAVATION AND BACKFILL

1. Provide all excavating and backfilling as required, with backfilling only after approval of the Architect. Backfill to be free of all debris and decayable matter. See Excavation and Backfill requirements in SECTION 31 20 00 – EARTH MOVING.

C. CUTTING, PATCHING, AND FRAMING

1. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by this Contractor shall be the responsibility of this Contractor and shall be repaired by skilled craftsmen of the trades involved at the Contractor’s expense.

2. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, framing for equipment, provided by others only if so noted on the drawings. Otherwise, they will be provided by this Contractor for his work. Whether chases, etc., are provided by this Contractor or others, this Contractor is responsible for correct size and locations.

1.9 COORDINATION

A. This Contractor shall plan his work to proceed with a minimum interference with other trades and it shall be his responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.
1.10 CLEAN UP

A. Keep the premises free from accumulation of waste material or rubbish caused by his work or employees.

B. Upon completion of work, remove materials, scraps and debris relative to his work and leave the premises, including tunnels, crawl spaces, and pipe chases in clean and orderly condition. Remove all dirt and debris from the interior and exterior of all devices and equipment. After construction is completed, wash all mechanical equipment.

1.11 DUST PROTECTION

A. Contractor will provide suitable dust protection for all existing areas prior to beginning of cutting or demolition. Contractor will obtain approval of partition from Owner before proceeding with work involved in these rooms.

1.12 TEMPORARY FACILITIES

A. OFFICES
 1. Contractor may provide a temporary office for himself and for the periodic use by the Architect/Engineer.

B. REMOVAL
 1. Contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinished to match adjacent areas.

C. LADDERS AND SCAFFOLDS
 1. The Contractor shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the Contractor.

D. PROTECTION DEVICES
 1. The Contractor shall provide and maintain his own necessary barricades, fences, signal lights, etc., required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the Contractor. The Contractor shall assume all responsibility for which the Owner may be held responsible because of lack of above items.

E. TEMPORARY WATER
 1. The Contractor shall provide all water required by his trade for construction. Temporary drinking water shall be provided by Contractor from a proven safe source dispensed by single service containers, until such time as the construction water outlet has been installed, disinfected, and approved for drinking purposes.

F. TEMPORARY FIRE PROTECTION
1. The Contractor shall provide all necessary first-aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority. The Contractor shall provide general area fire extinguishers only.

1.13 SHOP DRAWINGS

A. Provide eight PDF Electronic Submittals of manufacturer’s literature and/or certified prints as soon as possible but within thirty (30) days after awarding of Contract, for items of materials, equipment, or systems where called for in specifications. Shop drawings and literature complete showing item used, size, dimensions, capacity, rough-in, etc., as required for complete check and installation. Manufacturers literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.

B. Each copy of each item submitted must be clearly marked as follows for purposes of identification and record. Submittals not marked (typewritten only) as described below will be rejected and returned without review.
 Date:
 Name of Project:
 Branch of Work:
 Submitted by:
 Specification or Plan Reference:

C. Prior to their submission, each submittal shall be thoroughly checked by the Contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made, if any. Submittals requiring extensive corrections shall be revised before submission. Each submittal not stamped and signed by the Contractor evidencing such checking will be rejected and returned without review.

D. All submittals will be examined when submitted in proper form for compliance. Such review shall not relieve the Contractor of responsibility for errors, for deviation from the contract Documents, nor for violation of sound safety practices.

E. The Contractor shall keep in the field office one print of each submittal which has been reviewed and stamped by the Architect or Engineer.

F. Submittals will be required for each item of material and equipment furnished as noted in specifications.

G. Submittals which are incomplete relative to quality requirements, capacity, engineering data, dimensional data or detailed list of specialty or control equipment will be rejected. Lists shall include descriptive coding as specified or shown on drawings.

THE ENGINEER WILL PERFORM SHOP DRAWING REVIEW OF EACH ITEM; HOWEVER, SUBSEQUENT REVIEW OF ITEMS PREVIOUSLY REJECTED WILL BE BILLED TO THE CONTRACTOR AT A RATE OF $100 PER HOUR.
H. Schedule of Shop Drawings.
 1. Piping
 2. Valves
 3. Pumps
 4. Insulation
 5. Plumbing Specialties
 6. Plumbing fixtures
 7. Medical Gas Equipment
 8. Water Treatment Equipment
 9. Backflow Preventers

1.14 OPERATION AND MAINTENANCE MANUALS

 A. At the time orders are placed for any item of equipment requiring service or operating
 maintenance, the Contractor shall request the manufacturer furnish three (3) copies of
 OPERATION AND MAINTENANCE INSTRUCTIONS for each piece of equipment.
 These shall be included in the brochure of equipment.

1.15 BROCHURE OF EQUIPMENT

 A. Upon completion of work, prepare three copies of "Brochure of Equipment" containing
 data pertinent to equipment and systems on job. Binders containing materials shall be
 one or more three ring binders of sufficient number to hold all literature. Contained in
 binders shall be: Installation, maintenance, and operating instructions for each piece of
 equipment; parts lists; wiring diagrams; one copy of each shop drawing and literature
 submittal; record drawings, etc.

 B. All literature shall be clean, unused and filed under divider headings corresponding to
 the specifications.

 C. These brochures shall be submitted to the Architect/Engineer and approved by him
 before authorization of final payment.

1.16 AS-BUILT DRAWINGS

 A. The Contractor shall furnish to the Owner and Architect/Engineer a marked print
 showing the location of all concealed or underground pipe or conduit runs and other
 equipment installed other than as shown on the drawings. Dimension underground
 lines from established building lines. Indicate all installed pull boxes in conduit runs.

 B. The Contractor shall furnish to the Architect/Engineer a marked print showing the
 location of all mechanical equipment, plumbing fixtures, piping, etc. The location of
 any item which deviates from the bid documents shall be accurately drawn and
 dimensioned.
C. All underground piping shall be dimensioned from nearest column and/or exterior walls. The location of all maintenance related items such as duct access doors, fire dampers, isolation valves, filters, etc., shall be highlighted on as built drawing.

1.17 PLACING SYSTEMS IN OPERATION

A. At the completion of the work and at such time as the Owner shall direct, prior to final acceptance, the Contractor performing this work shall put into satisfactory operation the various systems installed under the specifications. At no additional cost to the Owner, furnish the services of a person completely familiar with the installations performed under this specification, to instruct the Owner's operating personnel in the proper operation and servicing of the equipment and systems. These services shall be available for a period of no less than one (1) day.

1.18 WARRANTY

A. The Contractor shall guarantee that all materials and labor installed are new and of first quality and that any material or labor found defective shall be replaced without cost to the Owner within one (1) year after substantial completion of the Contract or one (1) full season of heating and cooling operation, whichever is the greater. The guarantee shall list the date of the beginning of the one (1) year period, which shall be the date that the Substantial Completion Certificate is issued.

B. Any damage to the building, caused by defective work or material of the Contractor within the above-mentioned period, shall be satisfactorily repaired without cost to the Owner.

C. The guarantee does not include maintenance of equipment. The Owner shall accept full responsibility for proper operation and maintenance of equipment immediately upon substantial completion and occupancy of the building.

D. Final acceptance by the Owner will not occur until all operating instructions are mounted in Equipment Rooms and Operating Personnel thoroughly indoctrinated in the operation of all mechanical equipment by the Contractor.

END OF SECTION 22 00 00
SECTION 22 05 17 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Sleeve-seal systems in this article are used for piping penetrations in slabs-on-grade and below grade in exterior walls. These systems are available for NPS 1/2 to NPS 48 (DN 15 to DN 1200) piping.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).
4. Pipeline Seal and Insulator, Inc.
5. Proco Products, Inc.

C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Stainless steel.
 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 92 00 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 84 13 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
 b. Piping NPS 6 and Larger: PVC-pipe sleeves.

END OF SECTION 22 05 17
SECTION 22 05 18 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Insulated Piping: One-piece, stamped-steel type.

d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.

f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.

h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.

j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.
SECTION 22 05 19 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Liquid-in-glass thermometers.
 3. Thermowells.
 4. Dial-type pressure gages.
 5. Gage attachments.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Product certificates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft Inc.
 2. Ernst Flow Industries.
 3. Marsh Bellofram.
 8. REOTEMP Instrument Corporation.
 10. Trerice, H. O. Co.
 11. Watts; a Watts Water Technologies company.
 12. Weiss Instruments, Inc.
13. Weksler Glass Thermometer Corp.
14. WIKA Instrument Corporation.
15. Winters Instruments - U.S.

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, rigid, back and rigid, bottom, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab inc.
 b. Miljoco Corporation.
 d. Tel-Tru Manufacturing Company.
 e. Trerice, H. O. Co.
 f. Weiss Instruments, Inc.
 g. Weksler Glass Thermometer Corp.
 h. Winters Instruments - U.S.
3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.
a. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 THERMOWELLS

A. Thermowells:
2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
3. Material for Use with Copper Tubing: CNR or CUNI.
4. Material for Use with Steel Piping: CRES.
5. Type: Stepped shank unless straight or tapered shank is indicated.
6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
8. Bore: Diameter required to match thermometer bulb or stem.
9. Insertion Length: Length required to match thermometer bulb or stem.
10. Lagging Extension: Include on thermowells for insulated piping and tubing.
11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.4 PRESSURE GAGES

A. Direct-Mounted and remote mounted, Metal-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.
 b. Ashcroft Inc.
 c. Ernst Flow Industries.
 d. Flo Fab inc.
 e. Marsh Bellofram.
 f. Miljoco Corporation.
 g. Noshok.
 h. Palmer Wahl Instrumentation Group.
 i. ROETEMP Instrument Corporation.
 j. Tel-Tru Manufacturing Company.
 k. Trerice, H. O. Co.
 l. Watts; a Watts Water Technologies company.
 m. Weiss Instruments, Inc.
 n. Weksler Glass Thermometer Corp.
 o. WIKA Instrument Corporation.
 p. Winters Instruments - U.S.
3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal.
11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

H. Install remote-mounted pressure gages on panel.

I. Install valve and snubber in piping for each pressure gage for fluids.
J. Install thermometers in the following locations:
 1. Inlet and outlet of each water heater.
 2. Inlets and outlets of each domestic water heat exchanger.
 3. Inlet and outlet of each domestic hot-water storage tank.
 4. Inlet and outlet of each remote domestic water chiller.

K. Install pressure gages in the following locations:
 1. Building water service entrance into building.
 2. Inlet and outlet of each pressure-reducing valve.
 3. Suction and discharge of each domestic water pump.

L. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

M. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 1. Industrial-style, liquid-in-glass type.

B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be the following:
 1. Industrial-style, liquid-in-glass type.

C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be the following:
 1. Industrial-style, liquid-in-glass type.

D. Thermometers at inlet and outlet of each remote domestic water chiller shall be the following:
 1. Industrial-style, liquid-in-glass type.

E. Thermometer stems shall be of length to match thermowell insertion length.

3.3 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.

B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F.

C. Scale Range for Domestic Cooled-Water Piping: 0 to 100 deg F.

3.4 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each water service into building shall be the following:
 1. Liquid-filled, direct-mounted, metal case.
B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 1. Liquid-filled, direct-mounted, metal case.

C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 1. Liquid-filled, direct-mounted, metal case.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 100 psi.

B. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 22 05 19
SECTION 22 05 23.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. All piping, valves, and equipment for domestic water use shall comply with the reduction of lead in Drinking Water Act of 2011 which will be enforced January 4, 2014.

C. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.9 for building services piping valves.

D. NSF Compliance: NSF 61 for valve materials for potable-water service.

E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

G. Valve Sizes: Same as upstream piping unless otherwise indicated.

H. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.
I. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. One-Piece, Brass Ball Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. KITZ Corporation.
 2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Forged brass or bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass or stainless steel.
 h. Ball: Chrome-plated brass or stainless steel.
 i. Port: Reduced.

B. Two-Piece, Brass Ball Valves with Full Port and Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. DynaQuip Controls.
 e. Hammond Valve.
 f. Jomar Valve.
 g. KITZ Corporation.
 h. Legend Valve.
 i. Marwin Valve; Richards Industries.
 j. Milwaukee Valve Company.
 k. NIBCO INC.
 l. Red-White Valve Corporation.
 m. Stockham; Crane Energy Flow Solutions.
 n. Watts; a Watts Water Technologies company.
 2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass.
2.3 **BRONZE BALL VALVES**

A. **One-Piece, Bronze Ball Valves:**
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. NIBCO INC.
 c. Watts; a Watts Water Technologies company.

2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. **Two-Piece, Bronze Ball Valves with Full Port, and Bronze or Brass Trim:**
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Lance Valves.
 e. Milwaukee Valve Company.
f. NIBCO INC.
g. Watts; a Watts Water Technologies company.

2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

C. Two-Piece, Bronze Ball Valves with Regular Port and Bronze or Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. DynaQuip Controls.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts; a Watts Water Technologies company.

 2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Bronze or brass.
 h. Ball: Chrome-plated brass.
 i. Port: Regular.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Locate valves above accessible ceilings. If this is not possible, provide
3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.3 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. One piece, brass ball valve.
 3. One piece, bronze ball valve with bronze trim.
 4. Two-piece, brass ball valves with full port and brass trim.
 5. Two-piece, bronze ball valves with full port and bronze or brass trim.

3.4 HIGH-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 TO 200 PSIG)

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. One piece, brass ball valve.
 3. One piece, bronze ball valve with bronze trim.
 4. Two-piece, brass ball valves with full port and brass trim.
 5. Two-piece, bronze ball valves with full port and bronze or brass trim.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 2. One piece, brass ball valve.
 3. One piece, bronze ball valve with bronze trim.
 4. Two-piece, brass ball valves with full port and brass trim.
 5. Two-piece, bronze ball valves with full port and bronze or brass trim.

END OF SECTION 22 05 23.12
SECTION 22 05 23.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.
 2. Iron swing check valves.
 3. Iron swing check valves with closure control.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.
 1. Certification that products comply with NSF 61.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 for valve materials for potable-water service.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Bypass and Drain Connections: MSS SP-45.
2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. NIBCO INC.
 e. Red-White Valve Corporation.
 f. Watts; a Watts Water Technologies company.

 2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. NIBCO INC.
 d. Red-White Valve Corporation.
 e. Watts; a Watts Water Technologies company.

 2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: PTFE.

2.3 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. NIBCO INC.
 d. Red-White Valve Corporation.
 e. Watts; a Watts Water Technologies company.

 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged or threaded. See valve schedule articles.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Stockham; Crane Energy Flow Solutions.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged or threaded. See valve schedule articles.
 f. Trim: Composition.
 g. Seat Ring: Bronze.
 h. Disc Holder: Bronze.
 i. Disc: PTFE.
 j. Gasket: Asbestos free.

2.4 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. NIBCO INC.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged or threaded. See valve schedule articles.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
 h. Closure Control: Factory-installed exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever and Weight-Closure Control:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. NIBCO INC.
 d. Watts; a Watts Water Technologies company.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 200 psig.
 c. Body Design: Clear or full waterway.
WEST YELLOWSTONE SCHOOLS
CLASSROOM ADDITION
WEST YELLOWSTONE, MONTANA

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install swing check valves for proper direction of flow in horizontal position with hinge pin level.

F. Provide check valves at the discharge of each pump.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; metal-seat or resilient-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.
3. For Copper Tubing, NPS 5 and Larger: Flanged.
4. For Steel Piping, NPS 2 and Smaller: Threaded.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or threaded.
6. For Steel Piping, NPS 5 and Larger: Flanged.

3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:
 1. Horizontal and Vertical Applications: Bronze swing check valves, Class 125, nonmetallic disc with soldered or threaded end connections.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.

3.5 HIGH-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 TO 200 PSIG)

A. Pipe NPS 2 and Smaller:
 1. Horizontal and Vertical Applications: Bronze swing check valves, Class 125, nonmetallic disc with soldered or threaded end connections.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.

3.6 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves, Class 125, bronze disc with soldered or threaded end connections.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.
 2. Iron swing check valves with closure control, Class 125, lever and spring with threaded or flanged end connections.

END OF SECTION 22 05 23.14
SECTION 22 05 29 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Pipe positioning systems.
 6. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.

2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09 91 23 "Interior Painting."

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.

F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.
J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joint construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to center of bottom flange of beams if loads are considerable and rod sizes are large.
6. **C-Clamps (MSS Type 23):** For structural shapes.

7. **Welded-Steel Brackets:** For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. **Light (MSS Type 31):** 750 lb.
 b. **Medium (MSS Type 32):** 1500 lb.
 c. **Heavy (MSS Type 33):** 3000 lb.

8. **Side-Beam Brackets (MSS Type 34):** For sides of steel or wooden beams.

9. **Plate Lugs (MSS Type 57):** For attaching to steel beams if flexibility at beam is required.

N. **Saddles and Shields:** Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. **Steel-Pipe-Covering Protection Saddles (MSS Type 39):** To fill interior voids with insulation that matches adjoining insulation.
 2. **Protection Shields (MSS Type 40):** Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. **Thermal-Hanger Shield Inserts:** For supporting insulated pipe.

O. **Spring Hangers and Supports:** Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. **Spring Cushions (MSS Type 48):** For light loads if vertical movement does not exceed 1-1/4 inches.
 2. **Spring-Cushion Roll Hangers (MSS Type 49):** For equipping Type 41, roll hanger with springs.
 3. **Variable-Spring Base Supports (MSS Type 52):** Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 22 05 29
SECTION 22 05 48.13 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Open-spring isolators.
 5. Housed-spring isolators.
 6. Restrained-spring isolators.
 8. Pipe-riser resilient supports.
 9. Resilient pipe guides.
 10. Elastomeric hangers.
 11. Spring hangers.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Delegated-Design Submittal: For each vibration isolation device.
 1. Include design calculations for selecting vibration isolators.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS
A. Elastomeric Isolation Pads:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
2.2 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
 2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
 3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
 2. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
2.4 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
WEST YELLOWSTONE SCHOOLS
CLASSROOM ADDITION
WEST YELLOWSTONE, MONTANA

2.6 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig (3447 kPa).
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.
3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig (3447 kPa).
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- (13-mm-) thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig (3.45 MPa) on isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- (13-mm-) thick neoprene.
 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co., Inc.
 g. Vibration Mountings & Controls, Inc.
 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.11 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. California Dynamics Corporation.
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. Vibration Eliminator Co., Inc.
 f. Vibration Isolation.
 g. Vibration Mountings & Controls, Inc.
 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 22 05 48.13
SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark Pipe Markers.
 f. emedco.
 g. Kolbi Pipe Marker Co.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Seton Identification Products.
 2. Material and Thickness: aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 4. Background Color: Black.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark Pipe Markers.
 f. emedco.
 g. Kolbi Pipe Marker Co.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Seton Identification Products.
2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Background Color: Black.
5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
6. emedco.
7. LEM Products Inc.
8. Marking Services Inc.
10. Seton Identification Products.
11. Stranco, Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Yellow.

D. Background Color: Black.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Retain this article if these devices will identify some or all piping. Identification of piping by color-coded painting is covered in "Pipe Label Installation" Article.

B. Do not use pipe labels or plastic tapes for bare pipes conveying fluids at temperatures of 125 deg F (52 deg C) or higher.

C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 2. Brady Corporation.
 4. Carlton Industries, LP.
 5. Champion America.
 7. emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.
11. Seton Identification Products.

D. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

E. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

F. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

G. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.2 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.

B. Pipe Label Color Schedule:
 1. Low-Pressure Compressed Air Piping:
 a. Background: Safety blue.
 2. High-Pressure Compressed Air Piping:
 a. Background: Safety blue.
 3. Domestic Water Piping
 a. Background: Safety green.
 4. Sanitary Waste Storm Drainage Piping:
 a. Background Color: Safety black.

END OF SECTION 22 05 53
SECTION 22 07 19 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:
 1. Domestic hot-water piping.
 2. Domestic recirculating hot-water piping.
 3. Sanitary waste piping exposed to freezing conditions.
 4. Storm-water piping exposed to freezing conditions.
 5. Roof drains and rainwater leaders.

B. Related Sections:
 1. Section 22 07 16 "Plumbing Equipment Insulation."

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content and chemical components.
 2. LEED For Schools: Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that product complies with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail removable insulation at piping specialties, equipment connections, and access panels.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

B. Comply with the following applicable standards and other requirements specified for miscellaneous components:

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Pittsburgh Corning Corporation.
 2. Special-Shaped Insulation: ASTM C 552, Type III.
 3. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

H. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aeroflex USA, Inc.
 2. Armacell LLC.
 3. K-Flex USA.

I. Mineral-Fiber, Preformed Pipe Insulation:

J. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Johns Manville; a Berkshire Hathaway company.
 2. Knauf Insulation.
 3. Manson Insulation Inc.
 4. Owens Corning.
 5. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

K. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.

L. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armacell LLC.
 2. Nomaco Insulation.

2.2 INSULATING CEMENTS

B. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
C. Manufacturers: Subject to compliance with requirements, provide products by the following:
1. Foster Brand; H. B. Fuller Construction Products.
2. LEED: For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. LEED for Schools: Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

E. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Aeroflex USA, Inc.
2. Armacell LLC.
3. Foster Brand; H. B. Fuller Construction Products.
4. K-Flex USA.
5. LEED: For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. LEED for Schools: Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

G. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Childers Brand; H. B. Fuller Construction Products.
2. Eagle Bridges - Marathon Industries.
3. Foster Brand; H. B. Fuller Construction Products.
4. Mon-Eco Industries, Inc.
5. LEED: For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
6. LEED for Schools: Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

I. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Childers Brand; H. B. Fuller Construction Products.
2. Eagle Bridges - Marathon Industries.
3. Foster Brand; H. B. Fuller Construction Products.
4. Mon-Eco Industries, Inc.
5. LEED: For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

6. LEED for Schools: Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

J. PVC Jacket Adhesive: Compatible with PVC jacket.

K. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Dow Corning Corporation.
 2. Johns Manville; a Berkshire Hathaway company.
 5. LEED: For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 6. LEED for Schools: Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand; H. B. Fuller Construction Products.
 b. Vimasco Corporation.
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 e. Vimasco Corporation.
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. Joint Sealants:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Childers Brand; H. B. Fuller Construction Products.
 2. Eagle Bridges - Marathon Industries.
 3. Foster Brand; H. B. Fuller Construction Products.
 4. Mon-Eco Industries, Inc.
 5. Pittsburgh Corning Corporation.
 6. LEED: For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. LEED for Schools: Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. FSK and Metal Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. LEED: For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. LEED for Schools: Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. LEED: For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. LEED for Schools: Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Foster Brand; H. B. Fuller Construction Products.
 2. Vimasco Corporation.

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation.
 d. Speedline Corporation.
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. ITW Insulation Systems; Illinois Tool Works, Inc.
 c. RPR Products, Inc.
 2. Factory cut and rolled to size.
 3. Finish and thickness are indicated in field-applied jacket schedules.
 5. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 6. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
 b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 c. Tee covers.
 d. Flange and union covers.
 e. End caps.
 f. Beveled collars.
 g. Valve covers.
 h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.

E. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Pittsburgh Corning Corporation.
 2. Polyguard Products, Inc.

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc.; an American Biltrite company.
 d. Venture Tape.
 2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc.; an American Biltrite company.
 d. Venture Tape.
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Compac Corporation.
 b. Ideal Tape Co., Inc.; an American Biltrite company.
 c. Venture Tape.
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
 b. Compac Corporation.
 c. Ideal Tape Co., Inc.; an American Biltrite company.
 d. Venture Tape.
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.
2.10 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. ITW Insulation Systems; Illinois Tool Works, Inc.
 2. RPR Products, Inc.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, galvanized steel.

E. Manufacturers: Subject to compliance with requirements, provide products by the following:

2.11 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Engineered Brass Company.
 b. Insul-Tect Products Co.
 c. McGuire Manufacturing.
 d. Plumberex Specialty Products, Inc.
 e. Truebro.
 f. Zurn Industries, LLC.
 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.
3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the...
insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.

4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of cellular-glass insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of polyolefin pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer's recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer’s recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor’s option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

<table>
<thead>
<tr>
<th>System</th>
<th>Pipe Size and Location</th>
<th>Insulation Type and Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Drainage Piping, Roof Drain and Sumps Including overflow and standard drains</td>
<td>Above Ground Piping</td>
<td>½-inch fiberglass Insulation with ASJ Vapor Barrier Jacket</td>
</tr>
<tr>
<td>Domestic Hot and Cold Water Piping</td>
<td>Under Floor Piping</td>
<td>½-inch fire retardant plastic foam insulation</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Piping in Building 1-1/2-inches and smaller</td>
<td>1-inch fiberglass insulation with ASJ Vapor barrier jacket</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Piping in Building 2 inches and larger</td>
<td>1-1/2 inch fiberglass insulation with ASJ vapor barrier jacket</td>
</tr>
<tr>
<td>Domestic Cold Water and Pure Water</td>
<td>Piping in Building 2-inches and smaller</td>
<td>1-inch fiberglass insulation with ASJ Vapor barrier jacket</td>
</tr>
<tr>
<td>Domestic Cold Water and Pure Water</td>
<td>Piping in Building 2-1/2 inches and larger</td>
<td>1-1/2 inch fiberglass insulation with ASJ vapor barrier jacket</td>
</tr>
<tr>
<td>Domestic Hot Water Recirculation Piping</td>
<td>Piping in Building</td>
<td>1-inch Fiberglass Insulation with ASJ Vapor barrier jacket</td>
</tr>
</tbody>
</table>

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Sanitary Waste and Storm drain Piping Where Heat Tracing Is Installed: Insulation shall be one of the following:
 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Piping, Concealed:
 1. None.
D. Piping, Exposed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.024 inch thick.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Piping, Concealed:
 1. Aluminum, Smooth: 0.024 inch thick.
D. Piping, Exposed:
 1. Aluminum, Smooth: 0.024 inch thick.

3.17 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET
A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 22 07 19
SECTION 22 11 16 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

1.3 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.

B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in “Piping Schedule” Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with “NSF-pw.”

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.

C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.

F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

G. Copper Pressure-Seal-Joint Fittings:
 1. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 2. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

H. Copper Push-on-Joint Fittings:
 1. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B16.22.
 2. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe:
 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Standard-Pattern, Mechanical-Joint Fittings:
 1. AWWA C110/A21.10, ductile or gray iron.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

C. Compact-Pattern, Mechanical-Joint Fittings:
 1. AWWA C153/A21.53, ductile iron.
 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

A. Galvanized-Steel Pipe:
1. ASTM A 53/A 53M, Type E, Grade B, Standard Weight.
2. Include ends matching joining method.

C. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.

D. Malleable-Iron Unions:
 1. ASME B16.39, Class 150.
 2. Hexagonal-stock body.
 4. Threaded ends.

E. Flanges: ASME B16.1, Class 125, cast iron.

2.5 CPVC PIPING

A. CPVC Pipe: ASTM F 441/F 441M, Schedule 40.
 2. CPVC Threaded Fittings: ASTM F 437, Schedule 80.

2.6 PEX TUBE AND FITTINGS

A. PEX Distribution System: ASTM F 877, SDR 9 tubing.

B. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions.

C. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 877; with plastic or corrosion-resistant-metal valve for each outlet.

2.7 PVC PIPE AND FITTINGS

C. PVC Schedule 80 Threaded Fittings: ASTM D 2464.

2.8 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

F. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
 1. CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

G. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

H. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.9 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

C. Plastic-to-Metal Transition Fittings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Harvel Plastics, Inc.
 c. Spears Manufacturing Company.

2. Description:
 a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 b. One end with threaded brass insert and one solvent-cement-socket or threaded end.

D. Plastic-to-Metal Transition Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Colonial Engineering, Inc.
 b. NIBCO INC.
 c. Spears Manufacturing Company.

2. Description:
 a. CPVC or PVC four-part union.
 b. Brass or stainless-steel threaded end.
 c. Solvent-cement-joint or threaded plastic end.
 d. Rubber O-ring.
 e. Union nut.

2.10 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. Hart Industries International, Inc.
 e. Jomar Valve.
 f. Matco-Norca.
 g. Watts; a Watts Water Technologies company.
 h. Wilkins.
 i. Zurn Industries, LLC.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Central Plastics Company.
c. Matco-Norca.
d. Watts; a Watts Water Technologies company.
e. Wilkins.
f. Zurn Industries, LLC.

3. Factory-fabricated, bolted, companion-flange assembly.
5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
 c. Central Plastics Company.
 d. Pipeline Seal and Insulator, Inc.
2. Nonconducting materials for field assembly of companion flanges.
4. Gasket: Neoprene or phenolic.
5. Bolt Sleeves: Phenolic or polyethylene.

E. Dielectric Nipples:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elster Perfection Corporation.
 b. Grinnell Mechanical Products.
 c. Matco-Norca.
 d. Precision Plumbing Products, Inc.
 e. Victaulic Company.
3. Electroplated steel nipple complying with ASTM F 1545.
4. Pressure Rating and Temperature: 300 psig at 225 deg F.
5. End Connections: Male threaded or grooved.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.
3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.

D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 11 19 "Domestic Water Piping Specialties."

E. Install shutoff valve immediately upstream of each dielectric fitting.

F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 22 11 19 "Domestic Water Piping Specialties."

G. Install domestic water piping level without pitch and plumb.

H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.

I. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

J. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

K. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

L. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

M. Install piping to permit valve servicing.

N. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
O. Install piping free of sags and bends.

P. Install fittings for changes in direction and branch connections.

Q. Install PEX piping with loop at each change of direction of more than 90 degrees.

R. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

S. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping."

T. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 11 23 "Domestic Water Pumps."

U. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 22 05 19 "Meters and Gages for Plumbing Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Piping: Join according to ASTM D 2855.

I. Joints for PEX Piping: Join according to ASTM F 1807.

J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
B. Comply with requirements for pipe hanger, support products, and installation in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 6. NPS 6: 10 feet with 5/8-inch rod.
 7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 3. NPS 2: 10 feet with 3/8-inch rod.
 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
 7. NPS 6: 12 feet with 3/4-inch rod.
 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.

H. Install supports for vertical steel piping every 15 feet.

I. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 5. NPS 6: 48 inches with 3/4-inch rod.
 6. NPS 8: 48 inches with 7/8-inch rod.
J. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.

K. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.

L. Install hangers for vertical PEX piping every 48 inches.

M. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 4. NPS 6: 48 inches with 3/4-inch rod.
 5. NPS 8: 48 inches with 7/8-inch rod.

N. Install supports for vertical PVC piping every 48 inches.

O. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 22 05 53 "Identification for Plumbing Piping and Equipment."
B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.10 ADJUSTING

A. Perform the following adjustments before operation:
1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.
 B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
 C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.
 2. PVC, Schedule 40; socket fittings; and solvent-cemented joints.

E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be one of the following:
 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.
 2. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.
 3. PVC, Schedule 40; socket fittings; and solvent-cemented joints.

F. Under-building-slab, combined domestic water, building-service, and fire-service-main piping, NPS 6 to NPS 12, shall be the following:
 1. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.

G. Aboveground domestic water piping, NPS 8 and smaller, shall be one of the following:
 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
 3. PEX tube, NPS 1 and smaller; fittings for PEX tube; and crimped joints.

H. Aboveground, combined domestic water-service and fire-service-main piping, NPS 6 to NPS 12, shall be one of the following:
 1. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints. Wrap ductile iron in 10 mil polyethylene sheet. Provide galvanic protection.

END OF SECTION 22 11 16
SECTION 22 11 19 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Vacuum breakers.
 2. Backflow preventers.
 5. Temperature-actuated, water mixing valves.
 7. Hose bibs.
 8. Wall hydrants.
 10. Water-hammer arresters.
 11. Trap-seal primer valves.

B. Related Requirements:
 1. Section 22 05 19 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 2. Section 22 11 16 "Domestic Water Piping" for water meters.
 3. Section 22 47 13 "Drinking Fountains" for water filters for water coolers.

1.2 ACTION SUBMITTALS

 A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

 A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

 A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

 A. Potable-water piping and components shall comply with NSF 61 and NSF 14. Mark "NSF-pw" on plastic piping components.
2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 4. Inlet and Outlet Connections: Threaded.
 5. Finish: Chrome plated.

B. Hose-Connection Vacuum Breakers:
 2. Body: Bronze, nonremovable, with manual drain.
 4. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Double-Check, Backflow-Prevention Assemblies:
 2. Operation: Continuous-pressure applications unless otherwise indicated.
 3. Pressure Loss: 5 psig maximum, through middle third of flow range.
 4. Size: 2.5”.
 5. Design Flow Rate: 82 gpm.
 6. Selected Unit Flow Range Limits: 2-12 gpm.
 7. Pressure Loss at Design Flow Rate: 6 psi for sizes NPS 2 and smaller; 12 psi for NPS 2-1/2 and larger.
 8. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 9. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 10. Configuration: Designed for horizontal, straight-through flow.
 11. Accessories:
 a. ValvesNPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 b. ValvesNPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 WATER PRESSURE-REDUCING VALVES

A. Water Regulators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Cash Acme.
b. Conbraco Industries, Inc.
c. Honeywell Water Controls.
d. Watts; a Watts Water Technologies company.
e. Zurn Industries, LLC.

4. Size: See plans.

5. Design Flow Rate: 82 gpm.

7. Design Outlet Pressure Setting: 49 psi.

8. Body: Bronze with chrome-plated finish for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and NPS 3.

10. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and NPS 3.

2.6 BALANCING VALVES

A. Memory-Stop Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Red-White Valve Corporation.

2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.

3. Pressure Rating: 400-psig minimum CWP.

4. Size: NPS 2 or smaller.

5. Body: Copper alloy.

6. Port: Standard or full port.

7. Ball: Chrome-plated brass.

8. Seats and Seals: Replaceable.

9. End Connections: Solder joint or threaded.

2.7 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Cash Acme.
 c. Conbraco Industries, Inc.
 d. Honeywell Water Controls.
 e. Legend Valve.
f. Leonard Valve Company.
g. Powers.
h. Symmons Industries, Inc.
i. TACO Incorporated.
j. Watts; a Watts Water Technologies company.
k. Zurn Industries, LLC.

4. Type: Thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Finish: Chrome plated.

B. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Lawler Manufacturing Company, Inc.
c. Leonard Valve Company.
d. Powers.
e. Symmons Industries, Inc.
f. Zurn Industries, LLC.
3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Cabinet-type, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Valve Finish: Chrome plated.
10. Cabinet: Factory fabricated, stainless steel, for recessed mounting and with hinged, stainless-steel door.

2.8 STRainers FOR DOMestIC WATER PipING

A. Y-Pattern Strainers:
1. Pressure Rating: 125 psig minimum unless otherwise indicated.
2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.
5. Perforation Size:
a. Strainers NPS 2 and Smaller: 0.020 inch.
b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
c. Strainers NPS 5 and Larger: 0.10 inch.

2.9 HOSE BIBBS

A. Hose Bibbs:
 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 9. Finish for Service Areas: Chrome or nickel plated.
10. Finish for Finished Rooms: Chrome or nickel plated.
11. Operation for Equipment Rooms: Wheel handle or operating key.
14. Include operating key with each operating-key hose bibb.
15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.10 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:
 3. Operation: Loose key.
 4. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
 5. Inlet: NPS 3/4 or NPS 1.
 6. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
 7. Box: Deep, flush mounted with cover.
 8. Box and Cover Finish: Polished nickel bronze.
11. Operating Keys(s): One with each wall hydrant.

B. Nonfreeze, Hot- and Cold-Water Wall Hydrants:
 3. Operation: Loose key.
 4. Casing and Operating Rods: Of length required to match wall thickness. Include wall clamps.
 5. Inlet: NPS 3/4 or NPS 1.
6. Outlet: Concealed.
7. Box: Deep, flush mounted with cover.
8. Box and Cover Finish: Chrome plated.
9. Vacuum Breaker:
 a. Nonremovable, manual-drain-type, hose-connection vacuum breaker
 complying with ASSE 1011 or backflow preventer complying with
 ASSE 1052.
 b. Garden-hose thread complying with ASME B1.20.7 on outlet.
10. Operating Keys(s): Two with each wall hydrant.

2.11 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.
 9. Outlet: Threaded, short nipple with garden-hose thread complying with
 ASME B1.20.7 and cap with brass chain.

2.12 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. AMTROL, Inc.
 b. Josam Company.
 c. MIFAB, Inc.
 d. Precision Plumbing Products, Inc.
 e. Sioux Chief Manufacturing Company, Inc.
 g. Tyler Pipe; a subsidiary of McWane Inc.
 h. Watts; a Watts Water Technologies company.
 i. Zurn Industries, LLC.
 3. Type: Copper tube with piston.
 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.13 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.

C. Install balancing valves in locations where they can easily be adjusted.

D. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install cabinet-type units recessed in or surface mounted on wall as specified.
E. Install Y-pattern strainers for water on supply side of each control valve water pressure-reducing valve solenoid valve and pump.

F. Set nonfreeze, nondraining-type post hydrants in concrete or pavement.

G. Set freeze-resistant yard hydrants with riser pipe in concrete or pavement. Do not encase canister in concrete.

H. Install water-hammer arresters in water piping according to PDI-WH 201.

I. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

J. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test each pressure vacuum breaker double-check, backflow-prevention assembly according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.
END OF SECTION 22 11 19
SECTION 22 11 23 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. In-line, sealless centrifugal pumps.
 2. Horizontally mounted, in-line, close-coupled centrifugal pumps.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Prerequisite EA 2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1, without amendments, Section 7 - "Service Water Heating."

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advanced Mechanical Technologies.
 2. Armstrong Pumps, Inc.
 3. Bell & Gossett; a Xylem brand.
 4. Grundfos Pumps Corp.
 5. TACO Incorporated.
 6. WILO USA LLC - WILO Canada Inc.
B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.

C. Pump Construction:
1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.
2. Casing: Bronze, with threaded or companion-flange connections.
4. Motor: Single speed, unless otherwise indicated.

D. Capacities and Characteristics:
2. Total Dynamic Head: See Plans.
4. Maximum Continuous Operating Temperature: 220 deg F.
5. Pump Speed: See Plans.
6. Pump Control: Combination Thermostat/Timer.

2.2 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Alyan Pump Company.
2. Armstrong Pumps, Inc.
3. Bell & Gossett; a Xylem brand.
5. PACO Pumps; Grundfos Pumps Corporation, USA.
7. TACO Incorporated.
8. Thrush Co. Inc.

B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

C. Pump Construction:
1. Casing: Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
5. Bearings: Oil-lubricated; bronze-journal or ball type.
6. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

D. Motor: Single speed, with grease-lubricated ball bearings; and resiliently or rigidly mounted to pump casing.

E. Capacities and Characteristics:
 2. Total Dynamic Head: See Plans.
 4. Impeller Material: ASTM B 584, cast bronze or stainless steel.
 6. Maximum Continuous Operating Temperature: 225 deg F.
 7. Pump Control: Combination Thermostat/Timer.
 10. Electrical Characteristics: See Plans

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 1. Type: Water-immersion temperature sensor, for installation in piping.
 2. Range: 65 to 200 deg F.
 3. Enclosure: NEMA 250, Type 4X.
 4. Operation of Pump: On or off.
 5. Transformer: Provide if required.
 7. Settings: Start pump at 105 deg F and stop pump at 125 deg F.

B. Timers: Electric, for control of hot-water circulation pump.
 1. Type: Programmable, seven-day clock with manual override on-off switch.
 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 3. Operation of Pump: On or off.
 4. Transformer: Provide if required.
 5. Power Requirement: 120-V ac.
 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.
PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.

C. Install horizontally mounted, in-line, close-coupled centrifugal pumps with shaft horizontal.

D. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.
 1. Comply with requirements for vibration isolation devices specified in Section 22 05 48.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

E. Install thermostats in hot-water return piping.

F. Install timers adjacent to water heater.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 11 16 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 b. Comply with requirements for flexible connectors specified in Section 22 11 16 "Domestic Water Piping."
 2. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 22 11 19 "Domestic Water Piping Specialties."
 3. Install pressure gage at suction of each pump and pressure gage at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps.
Comply with requirements for pressure gages and snubbers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

D. Connect thermostats and timers to pumps that they control.

3.3 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 22 11 23
SECTION 22 13 16 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Credit IEQ 4.1: For solvent cements and adhesive primers, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit IEQ 4: For solvent cements and adhesive primers, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.

B. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 c. Fernco Inc.
 d. Matco-Norca.
 e. MIFAB, Inc.
 f. Mission Rubber Company, LLC; a division of MCP Industries.
 g. Stant.
 h. Tyler Pipe; a subsidiary of McWane Inc.
 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

C. Heavy-Duty, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ANACO-Husky.
 b. Clamp-All Corp.
 d. MIFAB, Inc.
 e. Mission Rubber Company, LLC; a division of MCP Industries.
 f. Stant.
 g. Tyler Pipe; a subsidiary of McWane Inc.
 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
2.3 PVC PIPE AND FITTINGS

A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.

B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.

C. Adhesive Primer: ASTM F 656,
 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Adhesive primer shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Solvent Cement: ASTM D 2564.
 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 2. Solvent cement shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 3. Unshielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Fernco Inc.
 3) Froet Industries LLC.
 4) Mission Rubber Company, LLC; a division of MCP Industries.
 5) Plastic Oddities.
 c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 d. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
4. Shielded, Nonpressure Transition Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2) Mission Rubber Company, LLC; a division of MCP Industries.
 c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING
 A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping at indicated slopes.
 F. Install piping free of sags and bends.
 G. Install fittings for changes in direction and branch connections.
 H. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 I. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from
horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

J. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.

K. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

L. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

M. Install aboveground PVC piping according to ASTM D 2665.

N. Install underground PVC piping according to ASTM D 2321.

O. Plumbing Specialties:
 1. Install backwater valves in sanitary waste gravity-flow piping. Comply with requirements for backwater valves specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Comply with requirements for cleanouts specified in Section 22 13 19 "Sanitary Waste Piping Specialties."

P. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
S. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

B. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

C. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:
 1. Install transition couplings at joints of piping with small differences in OD's.
 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 VALVE INSTALLATION

A. Backwater Valves: Install backwater valves in piping subject to backflow.
 1. Horizontal Piping: Horizontal backwater valves.
 2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
 3. Install backwater valves in accessible locations.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
5. Vertical Piping: MSS Type 8 or Type 42, clamps.
6. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
8. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 2. NPS 3: 60 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 5. NPS 6: 10 feet with 5/8-inch rod.
 6. NPS 8: 10 feet with 3/4-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 2. NPS 3: 48 inches with 1/2-inch rod.
 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.

K. Install supports for vertical PVC piping every 48 inches.

L. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect drainage and vent piping to the following:
 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves in pit with pit cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."
3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.
D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.11 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 8 and smaller shall be any of the following (if piping is located in a ceiling plenum, utilize cast iron piping only):
1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

C. Aboveground, vent piping NPS 6 and smaller shall be any of the following (If piping is located in a ceiling plenum, utilize cast iron piping only):
1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

D. Underground, soil, waste, and vent piping NPS 8 and smaller shall be any of the following:
1. Hubless, cast-iron soil pipe and fittings; cast-iron hubless-piping couplings; and coupled joints.
2. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

END OF SECTION 22 13 16
SECTION 22 13 19 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backwater valves.
 2. Cleanouts.
 3. Floor drains.
 4. Roof flashing assemblies.
 5. Miscellaneous sanitary drainage piping specialties.
 6. Flashing materials.
 7. Grease interceptors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 BACKWATER VALVES

A. Horizontal, Cast-Iron Backwater Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.
 3. Size: Same as connected piping.
 5. Cover: Cast iron with bolted access check valve.
 6. End Connections: Hub and spigot or hubless Hubless.
7. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang closed.
8. Extension: ASTM A 74, Service class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

B. Drain-Outlet Backwater Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.
2. Size: Same as floor drain outlet.
3. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
4. Check Valve: Removable ball float.
5. Inlet: Threaded.
6. Outlet: Threaded or spigot.

2.2 CLEANOUTS

A. Exposed Cast-Iron Cleanouts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.
2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
3. Size: Same as connected drainage piping
4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Closure: Countersunk or raised-head, brass plug.
6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Floor Cleanouts (F.C.O.):
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Oatey.
 c. Sioux Chief Manufacturing Company, Inc.
 e. Tyler Pipe; a subsidiary of McWane Inc.
 f. Watts; a Watts Water Technologies company.
 g. Zurn Industries, LLC.
2. Standard: ASME A112.36.2M for adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Adjustable housing.
5. Body or Ferrule: Cast iron.
7. Outlet Connection: Threaded.
8. Closure: Brass plug with tapered threads.
9. Adjustable Housing Material: Cast iron with threads.
11. Frame and Cover Shape: Round.
12. Top Loading Classification: Heavy Duty.
13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts (W.C.O.):
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 d. Tyler Pipe; a subsidiary of McWane Inc.
 e. Watts; a Watts Water Technologies company.
 f. Zurn Industries, LLC.
2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
5. Option for drilled-and-threaded plug in first subparagraph below is for a screw for a wall cover plate.
7. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
8. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.

2.3 FLOOR DRAINS

A. Cast-Iron Floor Drains:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Prier Products, Inc.
 f. Tyler Pipe; a subsidiary of McWane Inc.
 g. Watts; a Watts Water Technologies company.
 h. Zurn Industries, LLC.
2. Standard: ASME A112.6.3.
5. Seepage Flange: Required.
7. Top or Strainer Material: Nickel bronze.
8. Top of Body and Strainer Finish: Nickel bronze.
10. Top Loading Classification: Heavy Duty.
11. Trap Material: Cast iron.

2.4 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Thaler Metal Industries Ltd.
 c. Zurn Industries, LLC.
 2. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch-thick lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflash fitting.
 b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.5 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 2. Size: Same as connected waste piping.

B. Deep-Seal Traps:
 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
 2. Size: Same as connected waste piping.
 a. NPS 2: 4-inch-minimum water seal.
 b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

C. Air-Gap Fittings:
 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 2. Body: Bronze or cast iron.
 3. Inlet: Opening in top of body.
4. Outlet: Larger than inlet.
5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

D. Sleeve Flashing Device:
1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
2. Size: As required for close fit to riser or stack piping.

E. Stack Flashing Fittings:
1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
2. Size: Same as connected stack vent or vent stack.

F. Vent Caps:
1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
2. Size: Same as connected stack vent or vent stack.

2.6 FLAShING MATERIALS

A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.

B. Fasteners: Metal compatible with material and substrate being fastened.

C. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.

D. Solder: ASTM B 32, lead-free alloy.

E. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION
A. Install backwater valves in building drain piping. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.
B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 2. Locate at each change in direction of piping greater than 45 degrees.
 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 1. Position floor drains for easy access and maintenance.
 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

F. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.

G. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.

H. Assemble open drain fittings and install with top of hub 1 inch above floor.

I. Install deep-seal traps on floor drains and other waste outlets, if indicated.

J. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 2. Size: Same as floor drain inlet.

K. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
L. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.

M. Install vent caps on each vent pipe passing through roof.

N. Install grease interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 1. Above-Floor Installation: Set unit with bottom resting on floor, unless otherwise indicated.
 2. Flush with Floor Installation: Set unit and extension, if required, with cover flush with finished floor.
 3. Recessed Floor Installation: Set unit in receiver housing having bottom or cradle supports, with receiver housing cover flush with finished floor.
 4. Install cleanout immediately downstream from interceptors not having integral cleanout on outlet.

O. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

C. Grease Interceptors: Connect inlet and outlet to unit, and connect flow-control fitting and vent to unit inlet piping. Install valve on outlet of automatic drawoff-type unit.

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.
D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 07 62 00 "Sheet Metal Flashing and Trim."

F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each grease interceptor.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 13 19
SECTION 22 34 00 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Commercial, atmospheric, gas-fired, storage, domestic-water heaters.
 2. Commercial, power-burner, gas-fired, storage, domestic-water heaters.
 4. Residential, atmospheric, gas-fired, storage, domestic-water heaters.
 5. Residential, power-vent, gas-fired, storage, domestic-water heaters.
 6. Commercial, oil-fired, storage, domestic-water heaters.
 7. Domestic-water heater accessories.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated.

B. LEED Submittals:
 1. Product Data for Prerequisite EA2: Documentation indicating that units comply with applicable requirements in ASHRAE/IESNA 90.1, Section 7, "Service Water Heating."

C. Shop Drawings:
 1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.

B. Product certificates.

C. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.

D. Source quality-control reports.
E. Field quality-control reports.
F. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and maintenance data.

1.6 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects."

1.7 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 1. Warranty Periods: From date of Substantial Completion.
 a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Two year(s).

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS
A. Commercial, Atmospheric, Gas-Fired, Storage, Domestic-Water Heaters:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Bock Water Heaters, Inc.
 d. GSW Water Heating.
 e. HESco Industries, Inc.
 f. Lochinvar, LLC.
 g. PVI Industries, LLC.
 h. RECO USA.
 i. Rheem Manufacturing Company.
 j. Smith, A. O. Corporation.
 k. State Industries.

 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Lining: Glass complying with NSF 61 barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.

4. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
 g. Automatic Ignition: ANSI Z21.20/CSA C22.2 No. 199, electric, automatic, gas-ignition system.
 h. Temperature Control: Adjustable thermostat.
 i. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 j. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

5. Special Requirements: NSF 5 construction.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

A. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

B. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

C. Heat-Trap Fittings: ASHRAE 90.2.

E. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 2-psig pressure rating as required to match gas supply.

G. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

H. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.

I. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.

J. Domestic-Water Heater Stands: Manufacturer’s factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

K. Domestic-Water Heater Mounting Brackets: Manufacturer’s factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.
C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 03 30 00 "Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.

2. Maintain manufacturer's recommended clearances.

3. Arrange units so controls and devices that require servicing are accessible.

4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.

5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

7. Install anchor bolts to elevations required for proper attachment to supported equipment.

8. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping."

C. Install gas-fired, domestic-water heaters according to NFPA 54.

1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.

2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.

3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.

4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 23 11 23 "Facility Natural-Gas Piping."
D. Install oil-fired, domestic-water heaters according to NFPA 31.
 1. Install shutoff valves on fuel-oil supply piping to oil-fired water-heater burners without shutoff valves. Comply with requirements for shutoff valves specified in Section 23 11 13 "Facility Fuel-Oil Piping."

E. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

F. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

G. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

H. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 11 19 "Domestic Water Piping Specialties."

I. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

J. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

K. Fill domestic-water heaters with water.

L. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 22 11 16 "Domestic Water Piping."

B. Comply with requirements for fuel-oil piping specified in Section 23 11 13 "Facility Fuel-Oil Piping."

C. Comply with requirements for gas piping specified in Section 23 11 23 "Facility Natural-Gas Piping."

D. Drawings indicate general arrangement of piping, fittings, and specialties.
E. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 22 34 00
SECTION 22 42 13.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS

A. Water Closets: Floor mounted, bottom outlet, top spud.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kohler Co.
 c. Sloan Valve Company.
 d. TOTO USA, INC.

2. Bowl:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Style: Flushometer valve.
 e. Height: Standard and Handicapped/elderly, complying with ICC/ANSI A117.1 as indicated in the plumbing fixture schedule.
 f. Rim Contour: Elongated.
 g. Water Consumption: As noted on fixture schedule.
 h. Spud Size and Location: NPS 1-1/2; top.
i. Color: White.
3. Bowl-to-Drain Connecting Fitting: ASME A112.4.3.
4. Flushometer Valve: Provide to match fixture.
5. Toilet Seat: Provide to match fixture.

2.2 WALL-MOUNTED WATER CLOSETS

A. Water Closets: Wall mounted, top spud.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Kohler Co.
c. Sloan Valve Company.
d. TOTO USA, INC.
2. Bowl:
b. Material: Vitreous china.
c. Type: Siphon jet.
d. Style: Flushometer valve.
e. Height: Standard.
f. Rim Contour: Elongated.
g. Water Consumption: As noted on plumbing fixture schedule.
h. Spud Size and Location: NPS 1-1/2; top.
3. Flushometer Valve: Provide to match fixture.
4. Toilet Seat: Provide to match fixture.
5. Support:
a. Standard: ASME A112.6.1M.
b. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.
c. Water-Closet Mounting Height: Standard and Handicapped/elderly according to ICC/ANSI A117.1 as indicated in the plumbing fixture schedule.

2.3 FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Sloan Valve Company.
b. Zurn Industries, LLC.
4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.

B. Lever-Handle, Piston Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Moen.
 b. Sloan Valve Company.
 c. TOTO USA, INC.
 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Panel Finish: Chrome plated or stainless steel.

2.4 TOILET SEATS

A. Toilet Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Bemis Manufacturing Company.
 c. Church Seats; Bemis Manufacturing Company.
 d. Kohler Co.
 e. Olsonite Seat Co.
 f. TOTO USA, INC.
 g. Zurn Industries, LLC.
 4. Type: Commercial (Heavy duty).
 5. Shape: Elongated rim, open front.
 6. Hinge: Check.
 8. Seat Cover: Not required.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Water-Closet Installation:
1. Install level and plumb according to roughing-in drawings.
2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
2. Use carrier supports with waste-fitting assembly and seal.
3. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:
1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
4. Install actuators in locations that are easy for people with disabilities to reach.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:
1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

F. Joint Sealing:
1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to water-closet color.
3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.2 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.
3.3 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.4 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers’ recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 13.13
SECTION 22 42 13.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Urinals.
 2. Flushometer valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals: Wall hung, back outlet, siphon jet.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kohler Co.
 c. Zurn Industries, LLC.
 2. Fixture:
 b. Material: Vitreous china.
 c. Type: Siphon jet.
 d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 e. Water Consumption: Per plumbing fixture schedule.
 f. Spud Size and Location: NPS 3/4; top.
 g. Outlet Size and Location: NPS 2; back.
 h. Color: White.
 3. Flushometer Valve: to match urinal.
 4. Waste Fitting:
b. Size: NPS 2.

5. Support: ASME A112.6.1M, Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture.

B. Urinals: Wall hung, back outlet, washout.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kohler Co.
 c. TOTO USA, INC.
 d. Zurn Industries, LLC.
 2. Fixture:
 b. Material: Vitreous china.
 c. Type: Washout with extended shields.
 d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 e. Water Consumption: Per plumbing fixture schedule.
 f. Spud Size and Location: NPS 3/4, top.
 g. Outlet Size and Location: NPS 2, back.
 h. Color: White.

3. Flushometer Valve: To match urinal

4. Waste Fitting:
 b. Size: NPS 2.

5. Support: ASME A112.6.1M, Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture.

2.2 URINAL FLUSHOMETER VALVES

A. Lever-Handle, Diaphragm Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Valve Company.
 b. Zurn Industries, LLC.
 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Style: Exposed.
 8. Consumption: Per plumbing fixture schedule.

B. Solenoid-Actuator, Diaphragm Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Sloan Valve Company.
 b. Zurn Industries, LLC.
4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Style: Exposed.
8. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
9. Trip Mechanism: Battery-powered, electronic sensor complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
10. Consumption: Per the plumbing fixture schedule

C. Lever-Handle, Piston Flushometer Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Moen.
 b. Sloan Valve Company.
 c. TOTO USA, INC.
 d. Zurn Industries, LLC.
4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Style: Exposed.
8. Consumption: Per the plumbing fixture schedule.

D. Battery-Powered, Solenoid-Actuator, Piston Flushometer Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kohler Co.
 b. Moen Incorporated.
 c. Sloan Valve Company.
 d. TOTO USA, INC.
 e. Zurn Industries, LLC.
4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Style: Exposed.
8. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
9. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
10. Consumption: Per the plumbing fixture schedule.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.
B. Examine walls and floors for suitable conditions where urinals will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Urinal Installation:
 1. Install urinals level and plumb according to roughing-in drawings.
 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
 3. Install wall-hung, bottom-outlet urinals with tubular waste piping attached to supports.
 4. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.
 5. Install trap-seal liquid in waterless urinals.
B. Support Installation:
 1. Install supports, affixed to building substrate, for wall-hung urinals.
 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
 3. Use carriers without waste fitting for urinals with tubular waste piping.
 4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.
C. Flushometer-Valve Installation:
 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.
 4. Install fresh batteries in battery-powered, electronic-sensor mechanisms.
D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

E. Joint Sealing:
1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to urinal color.
3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS
A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING
A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
B. Adjust water pressure at flushometer valves to produce proper flow.
C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION
A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed urinals and fittings.
C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 13.16
SECTION 22 42 16.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Lavatories.
 2. Faucets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Servicing and adjustments of automatic faucets.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, COUNTER-MOUNTED LAVATORIES

A. Lavatory LAV-1: Oval, self rimming, vitreous china, counter mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Gerber Plumbing Fixtures LLC.
 c. Kohler Co.
 d. Sloan
 e. Zurn Industries, LLC.
 2. Fixture:
b. Type: Self-rimming for above-counter mounting.
c. Nominal Size: Oval, 20 by 17 inches.
d. Faucet-Hole Punching: Three holes, 4-inch centers.
e. Faucet-Hole Location: Top.
g. Mounting Material: Sealant.

3. Faucet: SEE SCHEDULE.

2.2 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory LAV-2: Vitreous china, wall mounted, with back.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Gerber Plumbing Fixtures LLC.
 c. Kohler Co.
 d. Sloan
 e. Zurn Industries, LLC.
 2. Fixture:
 b. Type: For wall hanging.
 c. Nominal Size: Oval, 23 by 15 inches.
 d. Faucet-Hole Punching: Three holes, 2-inch centers.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Chair carrier.
 3. Faucet: SEE SCHEDULE.

2.3 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, two-handle mixing, commercial, solid-brass valve.
 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. Zurn Industries, LLC.
 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 4. Body Type: Centerset.
 7. Maximum Flow Rate: 0.5 gpm.
 8. Maximum Flow: 0.25 gal. per metering cycle.
9. Mounting Type: Deck, exposed.
10. Valve Handle(s): Single lever.

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, soft-copper flexible tube riser.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine counters and walls for suitable conditions where lavatories will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.
B. Install supports, affixed to building substrate, for wall-mounted lavatories.
C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
E. Seal joints between lavatories and counters and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."
F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
B. Adjust water pressure at faucets to produce proper flow.
C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.
B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 16.13
SECTION 22 42 16.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Service basins.
 2. Service sinks.
 4. Handwash sinks.
 5. Sink faucets.
 7. Supply fittings.
 8. Waste fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

A. Service Basins MS-1: Plastic, floor mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane Plumbing, L.L.C.
 b. E. L. Mustee & Sons, Inc.
 c. Florestone Products Co., Inc.
 d. FNW; Ferguson Enterprises, Inc.
 e. Swan Corporation (The).
 f. Zurn Industries, LLC.
 g. Fiat Products, LLC.
2. Fixture:
 b. Material: Cast polymer.
 c. Nominal Size: 24 by 24 by 10 inches.
 d. Tiling Flange: Not required.
 e. Rim Guard: On all top surfaces.
 g. Drain: Grid with NPS 3 outlet.

3. Mounting: On floor and flush to wall.
4. Faucet: Delta Faucet #28C8073.

2.2 LAMINAR-FLOW, FAUCET-SPOUT OUTLETS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for faucet-spout-outlet materials that will be in contact with potable water.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AM Conservation Group, Inc.
 2. Chronomite Laboratories, Inc.
 3. NEOPERL, Inc.

C. Description: Chrome-plated brass, faucet-spout outlet that produces non-aerating, laminar stream. Include external or internal thread that mates with faucet outlet for attachment to faucets where indicated and flow-rate range that includes flow of faucet.

2.3 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2
 2. Chrome-plated, rigid-copper pipe.
2.4 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-hung sinks.

C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.

D. Set floor-mounted sinks in leveling bed of cement grout.

E. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping".
 2. Install stops in locations where they can be easily reached for operation.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 16.16
SECTION 22 42 23 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Individual showers.
 2. Shower faucets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets SH-1:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Chicago Faucets; Geberit Company.
 c. Kohler Co.
 d. Lawler Manufacturing Company, Inc.
 e. Leonard Valve Company.
 f. Moen Incorporated.
 g. Powers.
 h. Sloan Valve Company.
 i. Speakman Company.
 j. Zurn Industries, LLC.
 2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.
 3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
c. Finish: Polished chrome plate.
d. Maximum Flow Rate: 2.5 gpm unless otherwise indicated.
e. Mounting: Concealed.
f. Operation: Single-handle, twist or rotate control.
g. Antiscald Device: Integral with mixing valve.
h. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.

5. Shower Head:
 b. Type: Ball joint with arm and flange.
 c. Shower Head Material: Metallic with chrome-plated finish.
 d. Spray Pattern: Adjustable.
 e. Integral Volume Control: Not required.
 f. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
 g. Temperature Indicator: Integral with faucet.

2.2 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Assemble shower components according to manufacturers’ written instructions.

B. Install showers level and plumb according to roughing-in drawings.

C. Install water-supply piping with stop on each supply to each shower faucet.
 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping”.
 2. Install stops in locations where they can be easily reached for operation.

D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

E. Set shower receptors in leveling bed of cement grout.
3.2 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with traps and soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.3 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.4 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers’ recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 23
SECTION 22 47 13 - DRINKING FOUNTAINS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes drinking fountains and related components.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of drinking fountains.

1.3 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For drinking fountains to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 DRINKING FOUNTAINS
 A. Drinking Fountains DF-1: Painted cast iron or steel, wheelchair accessible.
 B. Drinking Fountains DF-1: Stainless steel, wall mounted.
 1. Bronze Drinking Fountains:
 a. Manufacturers: Subject to compliance with requirements, provide products
 by one of the following:
 1) Elkay Manufacturing Co.
 2) Filtrine Manufacturing Company.
 3) Halsey Taylor.
 4) Haws Corporation.
 2. Stainless-Steel Drinking Fountains:
 a. Manufacturers: Subject to compliance with requirements, provide products
 by one of the following:
 1) Elkay Manufacturing Co.
 2) Filtrine Manufacturing Company.
 3) Halsey Taylor.
 4) Haws Corporation.
 5) Murdock-Super Secur; a member of Morris Group International.
 6) Stern-Williams Co., Inc.
 7) Tri Palm International, LLC.
 3. Standards:
b. Comply with NSF 61.

4. Type Receptor: With back.

5. Receptor Shape: Rectangular Insert shape.

7. Bubblers: Two, with adjustable stream regulator, located on deck.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.

B. Examine walls and floors for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.

B. Set pedestal drinking fountains on floor.

C. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.

D. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping".

E. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
G. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

H. Adjust fixture flow regulators for proper flow and stream height.

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Install ball or gate shutoff valve on water supply to each fixture. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping".

D. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 CLEANING

A. After installation, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 47 13
SECTION 23 00 00 - MECHANICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 MECHANICAL REQUIREMENTS

A. The mechanical requirements are supplemental to the General Requirements of these Specifications. The Mechanical Sections shall apply to phases of the work specified, shown on the Drawings, or required to provide for the complete installation of Mechanical Systems for this project.

B. The work shall include all items, articles, materials, operations and methods listed, mentioned, or scheduled in these specifications and the accompanying drawings. All material, equipment, and labor shall be furnished together with all incidental items required by good practice to provide the complete systems described.

C. Examine and refer to all Architectural, Civil, Structural, Electrical, Utility, Landscape and Mechanical drawings and specifications for construction conditions which may affect the mechanical work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.

D. See general requirements for listed Alternate Bids. Note alternates listed and include any changes in work and price required to meet the requirements of the respective alternate.

1.2 CODES AND STANDARDS

A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following Organizations:
 1. American Gas Association (AGA)
 2. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)
 3. American Society of Mechanical Engineers (ASME)
 4. American Water Works Association (AWWA)
 5. National Electrical Code (NEC)
 6. National Electrical Manufacturers Association (NEMA)
 7. National Fire Protection Association (NFPA)
 8. International Plumbing Code
 9. Uniform Plumbing Code
 10. Occupational Safety & Health Act (OSHA)
 11. Plastic Pipe Institute (PPI)
 12. Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
 13. International Mechanical Code (IMC)
 15. Requirements of the Serving Utility Company
 16. Local and State Codes and Ordinances
17. SMACNA Seismic Manual

1.3 FEES AND PERMITS

A. The Mechanical Contractor shall pay all fees and arrange for all permits required for work done under his contract and under his supervision by subcontract.

B. All usage contracts between the Owner and the serving utilities company, such as membership and usage charges or fees, etc., for the purpose of obtaining the services for the utility company shall be applied for and paid for by the Owner.

C. All permits and fees for connection to the utility, including inspection and staking costs imposed by the utility company or required for proper installation, and all necessary manholes, encasements, valves, service boxes, meters, meter housings or vaults complete as required by the utility company of jurisdictional agency, shall be applied for and paid by the Mechanical Contractor.

D. Exception: The gas service from the main to and including the gas meter will be furnished and installed by the gas company and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

A. Manufacturers trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed must have prior approval. Written prior approval must be obtained from the Architect/Engineer ten (10) days prior to bid opening. Requests are to be submitted sufficiently ahead of the deadline to give ample time for examination. The items approved will be listed in an addendum and only this list of equipment will be accepted in lieu of specified products. Submittals must indicate the specific item or items to be furnished in lieu of those specified, together with complete technical and comparative data on specified items and proposed items. See list of prior approved manufacturers at end of this section.

B. Mechanical equipment may be installed with manufacturer’s standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.

C. This Contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.

D. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by manufacturer unless herein specified to the contrary.

E. This Contractor shall make the required arrangement with General Contractor for the introduction into the building of equipment too large to pass through finished openings.

F. Store materials and equipment indoors at the job site or, if this is not possible, store on raised platforms and protect from the weather by means of waterproof covers.
Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.

1.5 INTENT OF DRAWINGS

A. The drawings are partly diagrammatic and do not necessarily show exact location of piping and ductwork unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining lineal runs of piping or ductwork, nor shall they be used for shop drawings for piping and ductwork fabrication or ordering. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 RESPONSIBILITY

A. The Mechanical Contractor shall be responsible for the installation of a satisfactory and complete system in accordance with the intent of the drawing and specifications. Provide, at no extra cost, all incidental items required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.

B. The drawings do not attempt to show complete details of the building construction which affect the mechanical installation; and reference is therefore required to the Architectural, Civil, Structural, Landscape and Electrical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.

C. Location of mechanical system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and his decision shall govern. Necessary changes shall be made at the Contractor’s expense.

D. Determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves, and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed.

E. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.

F. Take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor’s risk.

G. At all times during the performance of this Contract, properly protect work from damage and protect the Owner’s property from injury of loss. Make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. Adequately protect adjacent property as provided by law and the Bidding Documents. Provide and maintain passageways,
guard fences, lights and other facilities for protection required by Public Authority or Local conditions.

H. The Contractor shall be responsible for damages due to the work of their Contractors, to the building or its contents, people, etc.

1.7 REVIEW

A. All work and material is subject to review at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform with these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at the Contractor’s expense.

1.8 WORKMANSHIP

A. GENERAL

1. Work under this contract shall be performed by workmen skilled in the particular trade, including work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.

B. EXCAVATION AND BACKFILL

1. Provide all excavating and backfilling as required, with backfilling only after approval of the Architect. Backfill to be free of all debris and decayable matter. See Excavation and Backfill requirements in DIVISION 31 – EARTH MOVING.

C. CUTTING, PATCHING, AND FRAMING

1. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by this Contractor shall be the responsibility of this Contractor and shall be repaired by skilled craftsmen of the trades involved at the Contractor’s expense.

2. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, framing for equipment, provided by others only if so noted on the drawings. Otherwise, they will be provided by this Contractor for his work. Whether chases, etc., are provided by this Contractor or others, this Contractor is responsible for correct size and locations.

1.9 COORDINATION

A. This Contractor shall plan his work to proceed with a minimum interference with other trades and it shall be his responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.

1.10 CLEAN UP

A. Keep the premises free from accumulation of waste material or rubbish caused by his work or employees.
B. Upon completion of work, remove materials, scraps and debris relative to his work and leave the premises, including tunnels, crawl spaces, and pipe chases in clean and orderly condition. Remove all dirt and debris from the interior and exterior of all devices and equipment. After construction is completed, wash all mechanical equipment.

1.11 DUST PROTECTION

A. Contractor will provide suitable dust protection for all existing areas prior to beginning of cutting or demolition. Contractor will obtain approval of partition from Owner before proceeding with work involved in these rooms.

1.12 TEMPORARY FACILITIES

A. OFFICES

1. Contractor shall provide a temporary office for himself and for the periodic use by the Architect/Engineer including:
 a. Lights, heat, and telephone. (Pay telephone not permitted.)

B. REMOVAL

1. Contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinished to match adjacent areas.

C. LADDERS AND SCAFFOLDS

1. The Contractor shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the Contractor.

D. PROTECTION DEVICES

1. The Contractor shall provide and maintain his own necessary barricades, fences, signal lights, etc., required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the Contractor. The Contractor shall assume all responsibility for which the Owner may be held responsible because of lack of above items.

E. TEMPORARY WATER

1. The Contractor shall provide all water required by his trade for construction. Temporary drinking water shall be provided by Contractor from a proven safe source dispensed by single service containers, until such time as the construction water outlet has been installed, disinfected, and approved for drinking purposes.

F. TEMPORARY FIRE PROTECTION

1. The Contractor shall provide all necessary first-aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority. The Contractor shall provide general area fire extinguishers only.
1.13 SHOP DRAWINGS

A. Provide eight (8) copies of manufacturer's literature and/or certified prints as soon as possible but within thirty (30) days after awarding of Contract, for items of materials, equipment, or systems where called for in specifications. Shop drawings and literature complete showing item used, size, dimensions, capacity, rough-in, etc., as required for complete check and installation. Manufacturers literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.

B. Each copy of each item submitted must be clearly marked as follows for purposes of identification and record. Submittals not marked (typewritten only) as described below will be rejected and returned without review.
 Date:
 Name of Project:
 Branch of Work:
 Submitted by:
 Specification or Plan Reference:

C. Prior to their submission, each submittal shall be thoroughly checked by the Contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made, if any. Submittals requiring extensive corrections shall be revised before submission. Each submittal not stamped and signed by the Contractor evidencing such checking will be rejected and returned without review.

D. All submittals will be examined when submitted in proper form for compliance. Such review shall not relieve the Contractor of responsibility for errors, for deviation from the contract Documents, nor for violation of sound safety practices.

E. The Contractor shall keep in the field office one print of each submittal which has been reviewed and stamped by the Architect or Engineer.

F. Submittals will be required for each item of material and equipment furnished as noted in specifications.

G. Submittals which are incomplete relative to quality requirements, capacity, engineering data, dimensional data or detailed list of specialty or control equipment will be rejected. Lists shall include descriptive coding as specified or shown on drawings.
 THE ENGINEER WILL PERFORM SHOP DRAWING REVIEW OF EACH ITEM; HOWEVER, SUBSEQUENT REVIEW OF ITEMS PREVIOUSLY REJECTED WILL BE BILLED TO THE CONTRACTOR AT A RATE OF $75 PER HOUR.

H. Schedule of Shop Drawings.
 1. Piping
 2. Valves
 3. Insulation
 4. Plumbing fixtures
5. Diffusers, grilles, louvers
6. Acoustical lining
7. Exhaust fans
8. Air distribution accessories
9. Heat pumps
10. Pumps
11. Wells
12. Temperature controls
13. Hydronic accessories
14. Well X-trol tanks

I. Submittals shall be properly bound in a three-ring binder or equivalent method. Unbound submittals shall be returned without review.

1.14 OPERATION AND MAINTENANCE MANUALS

A. At the time orders are placed for any item of equipment requiring service or operating maintenance, the Contractor shall request the manufacturer furnish three (3) copies of OPERATION AND MAINTENANCE INSTRUCTIONS for each piece of equipment. These shall be included in the brochure of equipment.

1.15 BROCHURE OF EQUIPMENT

A. Upon completion of work, prepare three copies of "Brochure of Equipment" containing data pertinent to equipment and systems on job. Binders containing materials shall be one or more three ring binders of sufficient number to hold all literature. Contained in binders shall be: Installation, maintenance, and operating instructions for each piece of equipment; parts lists; wiring diagrams; one copy of each shop drawing and literature submittal; record drawings, etc.

B. All literature shall be clean, unused and filed under divider headings corresponding to the specifications.

C. These brochures shall be submitted to the Architect/Engineer and approved by him before authorization of final payment.

1.16 AS-BUILT DRAWINGS

A. The Contractor shall furnish to the Owner and Architect/Engineer a marked print showing the location of all concealed or underground pipe or conduit runs and other equipment installed other than as shown on the drawings. Dimension underground lines from established building lines. Indicate all installed pull boxes in conduit runs.

B. The Contractor shall furnish to the Architect/Engineer a marked print showing the location of all mechanical equipment, plumbing fixtures, piping, ductwork, diffusers, grilles, etc. The location of any item which deviates from the bid documents shall be accurately drawn and dimensioned.

C. All underground piping and ductwork shall be dimensioned from nearest column and/or exterior walls. The location of all maintenance related items such as duct access
doors, fire dampers, isolation valves, filters, etc., shall be highlighted on as built drawing.

1.17 PLACING SYSTEMS IN OPERATION

A. At the completion of the work and at such time as the Owner shall direct, prior to final acceptance, the Contractor performing this work shall put into satisfactory operation the various systems installed under the specifications. At no additional cost to the Owner, furnish the services of a person completely familiar with the installations performed under this specification, to instruct the Owner’s operating personnel in the proper operation and servicing of the equipment and systems. These services shall be available for a period of no less than one (1) day.

1.18 WARRANTY

A. The Contractor shall guarantee that all materials and labor installed are new and of first quality and that any material or labor found defective shall be replaced without cost to the Owner within one (1) year after substantial completion of the Contract or one (1) full season of heating and cooling operation, whichever is the greater. The guarantee shall list the date of the beginning of the one (1) year period, which shall be the date that the Substantial Completion Certificate is issued.

B. Any damage to the building, caused by defective work or material of the Contractor within the above-mentioned period, shall be satisfactorily repaired without cost to the Owner.

C. The guarantee does not include maintenance of equipment. The Owner shall accept full responsibility for proper operation and maintenance of equipment immediately upon substantial completion and occupancy of the building.

D. Final acceptance by the Owner will not occur until all operating instructions are mounted in Equipment Rooms and Operating Personnel thoroughly indoctrinated in the operation of all mechanical equipment by the Contractor.

Any equipment, including heat exchangers, boilers, pumps, air handlers, motors, etc., used for temporary heat, shall be brought up to a new condition before final acceptance by the Owner and shall be guaranteed by the Contractor as new equipment.

END OF SECTION 23 00 00
SECTION 23 05 18 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.

B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Insulated Piping: One-piece, stamped-steel type.

d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type.

f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

gh. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.

j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chrome-plated finish.

k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 23 05 18
SECTION 23 05 19 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bimetallic-actuated thermometers.
 2. Liquid-in-glass thermometers.
 3. Thermowells.
 4. Dial-type pressure gages.
 5. Gage attachments.
 6. Pitot-tube flowmeters.
 7. Turbine flowmeters.
 8. Venturi flowmeters.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Wiring Diagrams: For power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Product certificates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ashcroft Inc
 2. Ernst Flow Industries
 3. Marsh Bellofram
 4. Miljoco Corporation
 5. Nanmac Corporation
 6. Noshok
7. Palmer Wahl Instrumentation
8. REOTEMP Instrument Corporation
9. Tel-Tru Manufacturing Company
10. Trerice, H.O. Corporation
11. Watts
12. Weiss Instruments, Inc.
13. Weksler Glass Thermometer
14. WIKA Instrument Corporation
15. Winters Instruments

C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.

D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.

E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.

F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.

G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.

H. Window: Plain glass.

I. Ring: Stainless steel.

J. Element: Bimetal coil.

K. Pointer: Dark-colored metal.

L. Accuracy: Plus or minus 1 percent of scale range.

2.2 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Miljoco Corporation
 c. Palmer Wahl Instrumentation
 d. Tel-Tru Manufacturing Company
 e. Trerice, H.O. Corporation
 f. Weiss Instruments, Inc.
 g. Weksler Glass Thermometer
 h. Winters Instruments
3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 DUCT-THERMOMETER MOUNTING BRACKETS
 A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.4 THERMOWELLS
 A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 3. Material for Use with Copper Tubing: CNR.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
 B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.5 PRESSURE GAGES
 A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc
 b. Ashcroft Inc
 c. Ernst Flow Industries
 d. Flo Fab, Inc
 e. Marsh Bellofram
 f. Miljoco Corporation
 g. Noshok
h. Palmer Wahl Instrumentation
i. REOTEMP Instrument Corporation
j. Tel-Tru Manufacturing Company
k. Trerice, H.O. Corporation
l. Watts
m. Weiss Instruments, Inc.
n. Weksler Glass Thermometer
o. WIKA Instrument Corporation
p. Winters Instruments

3. Case: Liquid-filled Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

B. Remote-Mounted, Metal-Case, Dial-Type Pressure Gages:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMETEK, Inc.
 b. Ashcroft Inc.
 c. Flo Fab Inc
 d. Marsh Bellofram
 e. Miljoco Corporation
 f. Noshok
 g. Palmer Wahl Instrumentation
 h. REOTEMP Instrument Corporation
 i. Tel-Tru Manufacturing Company
 j. Trerice, H.O. Corporation
 k. Weiss Instruments, Inc.
 l. WIKA Instrument Corporation
 m. Winters Instruments
3. Case: Liquid-filled Sealed type; cast aluminum or drawn steel; 4-1/2-inch nominal diameter with back flange and holes for panel mounting.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
10. Ring: Metal.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.6 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Siphons: Loop-shaped section of stainless-steel pipe with NPS 1/4 or NPS 1/2 pipe threads.

C. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.7 FLOWMETERS

A. Pitot-Tube Flowmeters:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABB
 b. Emerson Process Management
 c. kMeriam Process Technologies
 d. Nexus Valve, Inc.
 e. Preso Meters
 f. TACO Inc.
 g. Veris Inc.
2. Description: Flowmeter with sensor and indicator.
3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
4. Sensor: Insertion type; for inserting probe into piping and measuring flow directly in gallons per minute.
 a. Design: Differential-pressure-type measurement for water.
 b. Construction: Stainless-steel probe of length to span inside of pipe, with integral transmitter and direct-reading scale.
 d. Minimum Temperature Rating: 250 deg F.
5. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
6. Integral Transformer: For low-voltage power connection.
7. Accuracy: Plus or minus 3 percent.
9. Operating Instructions: Include complete instructions with each flowmeter.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.

G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.

H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

I. Install remote-mounted pressure gages on panel.

J. Install valve and snubber in piping for each pressure gage for fluids (except steam).

K. Install valve and syphon fitting in piping for each pressure gage for steam.

L. Install flow indicators in piping systems in accessible positions for easy viewing.

M. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.

N. Install flowmeter elements in accessible positions in piping systems.

O. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.

P. Install permanent indicators on walls or brackets in accessible and readable positions.

Q. Install connection fittings in accessible locations for attachment to portable indicators.

R. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.
S. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic boiler.
 3. Two inlets and two outlets of each chiller.
 4. Inlet and outlet of each hydronic coil in air-handling units.
 5. Two inlets and two outlets of each hydronic heat exchanger.
 6. Inlet and outlet of each thermal-storage tank.
 7. Outside-, return-, supply-, and mixed-air ducts.

T. Install pressure gages in the following locations:
 1. Discharge of each pressure-reducing valve.
 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 3. Suction and discharge of each pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

B. Connect flowmeter-system elements to meters.

C. Connect flowmeter transmitters to meters.

D. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

A. Thermometers at inlet and outlet of each hydronic zone shall be one of the following:
 1. Liquid-filled, bimetallic-actuated type.
 2. Industrial-style, liquid-in-glass type.

B. Thermometers at inlet and outlet of each hydronic boiler shall be one of the following:
 1. Liquid-filled, bimetallic-actuated type.
 2. Industrial-style, liquid-in-glass type.

C. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Heating, Hot-Water Piping: 0 to 250 deg F.
B. Scale Range for Air Ducts: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each pressure-reducing valve shall be one of the following:
 1. Liquid-filled Open-front, pressure-relief, direct-mounted, metal case.

B. Pressure gages at suction and discharge of each pump shall be one of the following:
 1. Liquid-filled Open-front, pressure-relief, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Heating, Hot-Water Piping: 0 to 100 psi.

3.8 FLOWMETER SCHEDULE

3.9 THERMAL-ENERGY METER SCHEDULE

END OF SECTION 23 05 19
SECTION 23 05 23.12 - BALL VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Brass ball valves.
 2. Bronze ball valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B31.1 for power piping valves.
 5. ASME B31.9 for building services piping valves.

C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

D. Refer to HVAC valve schedule articles for applications of valves.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.
3. Memory stops that are fully adjustable after insulation is applied.

I. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

A. One-Piece Brass Ball Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. KITZ Corporation.
2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. Two-Piece Brass Ball Valves with Full Port and Brass Trim:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. DynaQuip Controls.
 e. Hammond Valve.
 f. Jomar Valve;
 g. KITZ Corporation.
 h. Legend Valve & Fitting, Inc.
 i. Marwin Valve; Richards Industries.
 j. Milwaukee Valve Company.
 k. NIBCO INC.
 l. Red-White Valve Corporation.
 m. Stockham; Crane Energy Flow Solutions.
 n. Watts; a Watts Water Technologies company.
2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE.
C. Two-Piece Brass Ball Valves with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Flow-Tek, Inc.
 c. Hammond Valve.
 d. Jamesbury; Metso.
 e. Jenkins Valves; Crane Energy Flow Solutions.
 f. KITZ Corporation.
 g. Marwin Valve; Richards Industries.
 h. Milwaukee Valve Company.
 i. RuB Inc.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.

D. Two-Piece Brass Ball Valves with Regular Port and Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hammond Valve
 b. Jamesbury; Metso.
 c. Legend Valve & Fitting, Inc.
 d. Marwin Valve; Richards Industries.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts; a Watts Water Technologies company.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Forged brass.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.
E. Two-Piece Brass Ball Valves with Regular Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Jamesbury
 b. Marwin Valve
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Brass or bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Regular.

2.3 BRONZE BALL VALVES

A. One-Piece Bronze Ball Valves with Bronze Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries
 b. NIBCO Inc.
 c. Watts
 2. Description:
 b. CWP Rating: 400 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
 g. Stem: Bronze.
 h. Ball: Chrome-plated brass.
 i. Port: Reduced.

B. One-Piece Bronze Ball Valves with Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries
 b. NIBCO Inc.
 c. Watts
 2. Description:
 b. CWP Rating: 600 psig.
 c. Body Design: One piece.
 d. Body Material: Bronze.
 e. Ends: Threaded.
 f. Seats: PTFE.
g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Reduced.

C. Two-Piece Bronze Ball Valves with Full Port and Bronze or Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. American Valve
 b. Conbraco Industries, Inc.
 c. Crane; Crane Energy Flow Solutions.
 d. Hammond Valve.
 e. Lance Valves.
 f. Legend Valve & Fitting, Inc.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Red-White Valve Corporation.
 j. Watts; a Watts Water Technologies company.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Full.

D. Two-Piece Bronze Ball Valves with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Lance Valves.
 e. Milwaukee Valve Company.
 f. NIBCO INC.
 g. Watts; a Watts Water Technologies company.
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.
E. Two-Piece Bronze Ball Valves with Regular Port and Bronze or Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve
 b. Conbraco Industries, Inc.
 c. DynaQuip Controls.
 d. Hammond Valve.
 e. Jenkins Valves
 f. Lance Valves.
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Stockham
 j. Watts; a Watts Water Technologies company
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Bronze.
 i. Ball: Chrome-plated brass.
 j. Port: Regular.

F. Two-Piece Bronze Ball Valves with Regular Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Jenkins Valves
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts; a Watts Water Technologies company
 2. Description:
 b. SWP Rating: 150 psig.
 c. CWP Rating: 600 psig.
 d. Body Design: Two piece.
 e. Body Material: Bronze.
 f. Ends: Threaded.
 g. Seats: PTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Regular.
PART 3 - EXECUTION

3.1 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.

3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
 A. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.
 B. Select valves with the following end connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.3 HEATING-WATER VALVE SCHEDULE
 A. Pipe NPS 2 and Smaller: One piece, regular port, brass with brass trim.
 1. Valves may be provided with solder-joint ends instead of threaded ends.

END OF SECTION 23 05 23.12
SECTION 23 05 23.14 - CHECK VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bronze lift check valves.
 2. Bronze swing check valves.
 3. Iron swing check valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.1 for power piping valves.
 6. ASME B31.9 for building services piping valves.

C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

E. Valve Sizes: Same as upstream piping unless otherwise indicated.

F. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane
 c. Hammond Valve
 d. Jenkins Valves
 e. Jomar Valve
 f. KITZ Corporation
 g. Macomb Groups
 h. Milwaukee Valve Company
 i. NIBCO Inc.
 j. Powell Valves
 k. Red-White Valve Corp.
 l. Stockham
 m. Watts

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Hammond Valve
 c. Jenkins Valves
 d. KITZ Corporation
 e. Milwaukee Valve Company
 f. NIBCO Inc.
 g. Red-White Valve Corp.
 h. Stockham
 i. Watts
 2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE.

C. Class 150, Bronze Swing Check Valves with Bronze Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Valve, Inc.
 b. Crane
 c. Jenkins Valves
 d. KITZ Corporation
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Hammond Valve
 c. Jenkins Valves
 d. Milwaukee Valve Company
 e. NIBCO Inc.
 f. Watts

2. Description:
 a. Standard: MSS SP-80, Type 4.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: PTFE.

2.3 IRON SWING CHECK VALVES

A. Class 125, Iron Swing Check Valves with Metal Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Hammond Valve
 c. Jenkins Valves
 d. KITZ Corporation
 e. Legend Valve & Fitting
 f. Macomb Groups
 g. Milwaukee Valve Company
 h. NIBCO Inc.
 i. Powell Valves
 j. Red-White Valve Corp.
 k. Stockham
 l. Sure Flow
 m. Watts

2. Description:
a. Standard: MSS SP-71, Type I.
b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
c. NPS 14 to NPS 24, CWP Rating: 150 psig.
d. Body Design: Clear or full waterway.
e. Body Material: ASTM A 126, gray iron with bolted bonnet.
f. Ends: Flanged.
g. Trim: Bronze.
h. Gasket: Asbestos free.

B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Stockham
2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Composition.
 h. Seat Ring: Bronze.
 i. Disc Holder: Bronze.
 j. Disc: PTFE.
 k. Gasket: Asbestos free.

C. Class 250, Iron Swing Check Valves with Metal Seats:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Hammond Valve
 c. Jenkins Valves
 d. Milwaukee Valve Company
 e. NIBCO Inc.
 f. Stockham
 g. Watts
2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
 c. NPS 14 to NPS 24, CWP Rating: 300 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.
2.4 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. NIBCO Inc.
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.
 i. Closure Control: Factory-installed, exterior lever and spring.

B. Class 125, Iron Swing Check Valves with Lever and Weight-Closure Control:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane
 b. Hammond Valve
 c. Jenkins Valves
 d. Milwaukee Valve Company
 e. NIBCO Inc.
 f. Stockham
 g. Watts
 2. Description:
 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.
 i. Closure Control: Factory-installed, exterior lever and weight.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.
D. Install valves in position to allow full stem movement.

E. Install swing check valves for proper direction of flow in horizontal position with hinge pin level.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring; metal-seat check valves.

B. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:
1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 HEATING-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze Swing Check Valves: Class 125, bronze disc.

B. Pipe NPS 2-1/2 and Larger:
1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Iron Swing Check Valves: Class 125, metal seats.
3. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12: Class 125, lever and spring.
END OF SECTION 23 05 23.14
SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Thermal-hanger shield inserts.
 4. Fastener systems.
 5. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 1. Trapeze pipe hangers.
 2. Equipment supports.

C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.3 THERMAL-HANGER SHIELD INSERTS

A. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

B. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

D. Fastener System Installation:
 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer’s operating manual.
 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer’s written instructions.

E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

H. Install lateral bracing with pipe hangers and supports to prevent swaying.

I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING
 A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
 B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING
 A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
 B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09 91 13 "Exterior Painting" Section 09 91 23 "Interior Painting"
 C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE
 A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
 B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
 C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
 D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
 E. Use carbon-steel pipe hangers and supports and attachments for general service applications.
F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29
SECTION 23 05 48.13 - VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Elastomeric isolation pads.
 2. Elastomeric isolation mounts.
 3. Restrained elastomeric isolation mounts.
 4. Open-spring isolators.
 5. Housed-spring isolators.
 6. Restrained-spring isolators.
 8. Pipe-riser resilient supports.
 9. Resilient pipe guides.
 10. Elastomeric hangers.
 11. Spring hangers.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For each vibration isolation device.
 1. Include design calculations for selecting vibration isolators.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia.
 g. Vibration Eliminator Co. Inc.
 h. Vibration Isolation.
 i. Vibration Mountings & Controls, Inc.
 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform
 loading over pad area.
3. Size: Factory or field cut to match requirements of supported equipment.
4. Pad Material: Oil and water resistant with elastomeric properties.
5. Surface Pattern: Smooth pattern.
6. Infused nonwoven cotton or synthetic fibers.
7. Load-bearing metal plates adhered to pads.

2.2 ELASTOMERIC ISOLATION MOUNTS
A. Double-Deflection, Elastomeric Isolation Mounts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia.
 g. Vibration Eliminator Co. Inc.
 h. Vibration Isolation.
 i. Vibration Mountings & Controls, Inc.
2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS
A. Restrainted Elastomeric Isolation Mounts:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia.
 g. Vibration Eliminator Co. Inc.
 h. Vibration Isolation.
 i. Vibration Mountings & Controls, Inc.
2. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.
2.4 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. Vibration Eliminator Co. Inc.
 f. Vibration Isolation.
 g. Vibration Mountings & Controls, Inc.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co. Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.
2.6 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Novia.
 g. Vibration Eliminator Co. Inc.
 h. Vibration Isolation.
 i. Vibration Mountings & Controls, Inc.
 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.
 3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co. Inc.
 g. Vibration Isolation.
 h. Vibration Mountings & Controls, Inc.
 2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene.
 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Isolation Technology, Inc.
 d. Kinetics Noise Control, Inc.
 e. Mason Industries, Inc.
 f. Vibration Eliminator Co. Inc.
 g. Vibration Mountings & Controls, Inc.
 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.
2.11 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mounting Company.
 b. California Dynamics Corporation.
 c. Kinetics Noise Control, Inc.
 d. Mason Industries, Inc.
 e. Vibration Eliminator Co. Inc.
 f. Vibration Isolation.
 g. Vibration Mountings & Controls, Inc.
 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 23 05 48.13
SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Duct labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by
 one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark Pipe Markers.
 f. emedco.
 g. Kolbi Pipe Marker Co.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Seton Identification Products.
 2. Material and Thickness: aluminum, 0.032-inch minimum thickness, and having
 predrilled or stamped holes for attachment hardware.
 5. Minimum Label Size: Length and width vary for required label content, but not
 less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24
 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger
 lettering for greater viewing distances. Include secondary lettering two-thirds to
 three-quarters the size of principal lettering.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Brady Corporation.
2. Brimar Industries, Inc
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
6. emedco.
7. LEM Products Inc.
8. Marking Services, Inc.
9. National Marker Company
10. Seton Identification Products.
11. Stranco, Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: White.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Actioncraft Products, Inc.
2. Brady Corporation.
3. Brimar Industries, Inc
4. Carlton Industries, LP.
5. Champion America.
7. emedco.
8. Kolbi Pipe Marker Co
9. LEM Products Inc.
10. Marking Services, Inc.
11. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 DUCT LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc
 3. Carlton Industries, LP.
 5. Craftmark Pipe Markers.
 6. emedco.
 7. Kolbi Pipe Marker Co
 8. LEM Products Inc.
 9. Marking Services, Inc.
 10. Seton Identification Products.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.

D. Background Color: White.
E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 09 91 23 "Interior Painting."

B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Pipe Label Color Schedule:

3.4 DUCT LABEL INSTALLATION

A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.

B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 23 05 53
SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 2. Balancing Hydronic Piping Systems:
 a. Constant-flow hydronic systems.
 b. Variable-flow hydronic systems.

1.2 DEFINITIONS

C. TAB: Testing, adjusting, and balancing.
D. TABB: Testing, Adjusting, and Balancing Bureau.
E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

B. Certified TAB reports.

1.4 QUALITY ASSURANCE

A. TAB Contractor Qualifications: Engage a TAB entity certified by NEBB.
 1. TAB Field Supervisor: Employee of the TAB contractor and certified by NEBB.
 2. TAB Technician: Employee of the TAB contractor and who is certified by NEBB as a TAB technician.
B. Certify TAB field data reports and perform the following:
 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.

C. TAB Report Forms: Use standard TAB contractor's forms approved by Owner.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.5 Approved TAB Contractors:

A. RGO Bozeman.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 23 31 13 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, “Fans and Systems,” or in SMACNA’s “HVAC Systems - Duct Design.” Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.

L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

N. Examine system pumps to ensure absence of entrained air in the suction piping.

O. Examine operating safety interlocks and controls on HVAC equipment.

P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes strategies and step-by-step procedures.

B. Complete system-readiness checks and prepare reports. Verify the following:
1. Permanent electrical-power wiring is complete.
2. Hydronic systems are filled, clean, and free of air.
3. Automatic temperature-control systems are operational.
4. Equipment and duct access doors are securely closed.
5. Balance, smoke, and fire dampers are open.
6. Isolating and balancing valves are open and control valves are operational.
7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," Section 23 07 19 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer’s outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.
J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 1. Measure total airflow.
 a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 2. Measure fan static pressures as follows to determine actual static pressure:
 a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 b. Measure static pressure directly at the fan outlet or through the flexible connection.
 c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and treating equipment.
 a. Report the cleanliness status of filters and the time static pressures are measured.
 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 6. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 1. Measure airflow of submain and branch ducts.
a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.

2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.

3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.

C. Measure air outlets and inlets without making adjustments.
 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.

D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 1. Open all manual valves for maximum flow.
 2. Check liquid level in expansion tank.
 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 6. Set system controls so automatic valves are wide open to heat exchangers.
 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.
3.7 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Owner and comply with requirements in Section 23 21 23 "Hydronic Pumps."
 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 4. Report flow rates that are not within plus or minus 10 percent of design.

B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.

C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.

D. Set calibrated balancing valves, if installed, at calculated presettings.

E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.

F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.

G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 1. Determine the balancing station with the highest percentage over indicated flow.
 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 3. Record settings and mark balancing devices.

H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.

I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
J. Check settings and operation of each safety valve. Record settings.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.9 PROCEDURES FOR MOTORS

A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Efficiency rating.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter thermal-protection-element rating.

B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.10 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.

B. Steam Boilers: Measure and record entering-water temperature and flow and leaving-steam pressure, temperature, and flow.

3.11 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
 5. Check the condition of coils.
 6. Check the operation of the drain pan and condensate-drain trap.
7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 1. New filters are installed.
 2. Coils are clean and fins combed.
 3. Drain pans are clean.
 4. Fans are clean.
 5. Bearings and other parts are properly lubricated.
 6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
 4. Balance each air outlet.

3.12 TOLERANCES

A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 10 percent.
 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.13 REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and
problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.14 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 2. Include a list of instruments used for procedures, along with proof of calibration.

B. Final Report Contents: In addition to certified field-report data, include the following:
 1. Pump curves.
 2. Fan curves.
 3. Manufacturers' test data.
 4. Field test reports prepared by system and equipment installers.
 5. Other information relative to equipment performance; do not include Shop Drawings and product data.

C. General Report Data: In addition to form titles and entries, include the following data:
 1. Title page.
 2. Name and address of the TAB contractor.
 3. Project name.
 4. Project location.
 5. Architect's name and address.
 6. Engineer's name and address.
 7. Contractor's name and address.
 9. Signature of TAB supervisor who certifies the report.
 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
 12. Nomenclature sheets for each item of equipment.
 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Water and steam flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.

3.15 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93
SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:
1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
7. Indoor, concealed oven and warewash exhaust.
8. Indoor, exposed oven and warewash exhaust.
9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
11. Outdoor, concealed supply and return.
12. Outdoor, exposed supply and return.

B. Related Sections:
1. Section 23 07 19 "HVAC Piping Insulation."
2. Section 23 31 13 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Certain Teed Corporation
 b. Johns Manville
 c. Knauf Insulation
 d. Manson Insulation
 e. Owens Corning

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Certain Teed Corporation
 b. Johns Manville
 c. Knauf Insulation
 d. Manson Insulation
 e. Owens Corning

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M
 b. Certain Teed Corporation
 c. Johns Manville
 d. Nelson Firestop
 e. Thermal Ceramics
 f. Unifrax Corp

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
d. Mon-Eco Industries

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corp
 b. Johns Manville
 c. P.I.C. Plastics
 d. Speedline Corp

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand
 b. Vimasco Corp

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F.

4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Knauf Insulation
 e. Mon-Eco Industries
f. Vimasco Corp

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Color: Aluminum.
 6. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 3. Fire- and water-resistant, flexible, elastomeric sealant.
 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH
A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for ducts.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand
 b. Vimasco Corp

2.8 FIELD-APPLIED JACKETS
A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville
 b. P.I.C. Plastics
 c. Proto Corp
 d. Speedline Corp
 2. Adhesive: As recommended by jacket material manufacturer.
D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. ITW Insulation Systems
 c. RPR Products Inc.
 2. Sheet and roll stock ready for shop or field sizing.
 3. Finish and thickness are indicated in field-applied jacket schedules.
5. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.

E. Self-Adhesive Outdoor Jacket: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Polyguard Products

2.9 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corp
 b. Compac Corp
 c. Ideal Tape Co
 d. Knauf Insulation
 e. Venture Tape
 2. Width: 3 inches.
 3. Thickness: 11.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corp
 b. Compac Corp
 c. Ideal Tape Co
 d. Knauf Insulation
 e. Venture Tape
 2. Width: 3 inches.
 3. Thickness: 6.5 mils.
 5. Elongation: 2 percent.
 6. Tensile Strength: 40 lbf/inch in width.
 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Compac Corp
 b. Ideal Tape Co
 c. Venture Tape

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corp
 b. Compac Corp
 c. Ideal Tape Co
 d. Knauf Insulation
 e. Venture Tape
 2. Width: 2 inches.
 3. Thickness: 3.7 mils.
 5. Elongation: 5 percent.
 6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems
 b. RPR Products, Inc.

B. Insulation Pins and Hangers:
 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) AMG Industries Inc
 2) Gemco
 3) Midwest Fasteners, Inc.
 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. Spindle: Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Gemco
 2) Midwest Fasteners, Inc.
 b. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 c. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 b. Spindle: Stainless steel, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 c. Adhesive-backed base with a peel-off protective cover.

4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, galvanized steel.

2.11 CORNER ANGLES

A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.

B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 07 84 13 "Penetration Firestopping."

3.7 FINISHES

A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the “Duct Insulation Schedule, General” Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:
 1. Indoor, concealed supply and outdoor air.
 2. Indoor, exposed supply and outdoor air.
 3. Indoor, concealed return located in unconditioned space.
 4. Indoor, exposed return located in unconditioned space.
 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 7. Indoor, concealed oven and warewash exhaust.
 8. Indoor, exposed oven and warewash exhaust.
 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 11. Outdoor, concealed supply and return.
 12. Outdoor, exposed supply and return.

B. Items Not Insulated:
 1. Fibrous-glass ducts.
 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 3. Factory-insulated flexible ducts.
 5. Flexible connectors.
 7. Factory-insulated access panels and doors.
3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

B. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, Exhaust-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Exposed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

G. Exposed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Exposed, Exhaust-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

3.11 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.

B. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Exposed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

F. Exposed, Return-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.
3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

D. Ducts and Plenums, Exposed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

D. Ducts and Plenums, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 1. Aluminum, Smooth: 0.020 inch thick.

E. Ducts and Plenums, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 1. Aluminum, Smooth with 1-1/4-Inch- Deep Corrugations: 0.032 inch thick.

END OF SECTION 23 07 13
SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following HVAC piping systems:
 1. Heating hot-water piping, indoors and outdoors.

B. Related Sections:
 1. Section 23 07 13 "Duct Insulation."
 2. Section 23 21 13.13 "Underground Hydronic Piping" for loose-fill pipe insulation in underground piping outside the building.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pittsburgh Corning Corp
 2. Block Insulation: ASTM C 552, Type I.
 3. Special-Shaped Insulation: ASTM C 552, Type III.
 4. Board Insulation: ASTM C 552, Type IV.
 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC
 c. K-Flex USA

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 1290, Type I.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corp
 b. Johns Manville
 c. Knauf Insulation
H. Mineral-Fiber, Preformed Pipe Insulation:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville
 b. Knauf Insulation
 c. Manson Insulation
 d. Owens Corning
2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, without factory-applied jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

I. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory-applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Owens Corning

J. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armacell LLC
 b. Nomaco Insulation

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ramco Insulation, Inc.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC
 c. Foster Brand
 d. K-Flex
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries, Inc.
 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries, Inc.
2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

F. PVC Jacket Adhesive: Compatible with PVC jacket.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corp
 b. Johns Manville
 c. P.I.C. Plastics, Inc.
 d. Speedline Corp
 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand
 b. Vimasco Corp
 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Knauf Insulation
 e. Mon-Eco Industries, Inc.
 f. Vimasco Corp
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 SEALANTS

A. Joint Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries, Inc.
 e. Pittsburgh Corning Corp
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F.
5. Color: White or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. FSK and Metal Jacket Flashing Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. Eagle Bridges
 c. Foster Brand
 d. Mon-Eco Industries, Inc.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealants shall comply with the testing and product requirements of the California Department of Health Services’ “Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers.”

2.5 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
5. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) ITW Insulation Systems
6. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) ITW Insulation Systems
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) ITW Insulation Systems
8. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.
2.6 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Foster Brand
 b. Vimasco Corp

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville
 b. P.I.C. Plastics, Inc.
 c. Proto Corporation
 d. Speedline Corp
 2. Adhesive: As recommended by jacket material manufacturer.
 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand
 b. ITW Insulation Systems
 c. RPR Products
 2. Sheet and roll stock ready for shop or field sizing.
 3. Finish and thickness are indicated in field-applied jacket schedules.
 5. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 6. Factory-Fabricated Fitting Covers:
 a. Same material, finish, and thickness as jacket.
b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
c. Tee covers.
d. Flange and union covers.
e. End caps.
f. Beveled collars.
g. Valve covers.
h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

E. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Polyguard Products Inc.

F. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems

G. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Avery Dennison Corp
 b. Compac Corp
 c. Ideal Tape Co Inc.
d. Knauf Insulation
e. Venture Tape

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Avery Dennison Corp
b. Compac Corp
c. Ideal Tape Co Inc.
d. Knauf Insulation
e. Venture Tape
2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Compac Corp
b. Ideal Tape Co Inc.
c. Venture Tape
2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Avery Dennison Corp
b. Compac Corp
c. Ideal Tape Co Inc.
d. Knauf Insulation
e. Venture Tape
2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation systems
 2. Width: 3 inches.
 3. Film Thickness: 4 mils.
 4. Adhesive Thickness: 1.5 mils.
 5. Elongation at Break: 145 percent.
 6. Tensile Strength: 55 lbf/inch in width.

F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems
 2. Width: 3 inches.
 3. Film Thickness: 6 mils.
 4. Adhesive Thickness: 1.5 mils.
 5. Elongation at Break: 145 percent.
 6. Tensile Strength: 55 lbf/inch in width.

2.9 SECUREMENTS

A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ITW Insulation Systems
 b. RPR Products Inc.

B. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

C. Wire: 0.062-inch soft-annealed, stainless steel.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. C & F Wire

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.3 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of cellular-glass insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of polyolefin pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
3.9 FIELD-APPLIED JACKET INSTALLATION

A. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

D. Where PVDC jackets are indicated, install as follows:
 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
 3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch circumference limit allows for 2-inch overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for “fishmouthing,” and use PVDC tape along lap seal to secure joint.
 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.10 FINISHES

A. Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
1. **Flat Acrylic Finish:** Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 a. **Finish Coat Material:** Interior, flat, latex-emulsion size.

B. **Flexible Elastomeric Thermal Insulation:** After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. **Color:** Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. **Tests and Inspections:**
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. **Items Not Insulated:** Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

A. **Heating-Hot-Water Supply and Return, 200 Deg F and Below:** Insulation shall be one of the following:
 1. **Cellular Glass:** 1-1/2 inches thick.
 2. **Mineral-Fiber, Preformed Pipe, Type I:** 1 inch thick.
3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Heating-Hot-Water Supply and Return, 200 Deg F and Below: Insulation shall be one of the following:
 1. Cellular Glass: 3 inches thick.
 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.15 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

A. Loose-fill insulation, for belowground piping, is specified in Section 23 21 13.13 "Underground Hydronic Piping".

B. Heating-Hot-Water Supply and Return, All Sizes, 200 Deg F and Below: Cellular glass, 3 inches thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

D. Piping, Exposed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed:
 1. None.
 2. PVC: 20 mils thick.
 3. Aluminum, Smooth: 0.020 inch thick.

D. Piping, Exposed:
 1. PVC: 20 mils thick.
3.18 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 23 07 19
SECTION 23 09 23.12 - CONTROL DAMPERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes control dampers and actuators for DDC systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal:
 1. Schedule and design calculations for control dampers and actuators, including the following:
 a. Flow at project design and minimum flow conditions.
 b. Face velocity at project design and minimum airflow conditions.
 c. Pressure drop across damper at project design and minimum airflow conditions.
 d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
C. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 “Quality Requirements,” to size products where indicated as delegated design.

D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.

E. Selection Criteria:
 1. Fail positions unless otherwise indicated:
 a. Supply Air: Last position.
 b. Return Air: Last position.
 c. Outdoor Air: Last position.
 d. Mixed Air: Last position.
 e. Exhaust Air: Last position.
 2. Select modulating dampers for a pressure drop of 2 percent of fan total static pressure unless otherwise indicated.

2.2 RECTANGULAR CONTROL DAMPERS

A. General Requirements:
 1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
 2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.

B. Rectangular Dampers with Aluminum Airfoil Blades:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ruskin Company
 2. Performance:
 a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. (15.2 L/s per sq. m) against 1-in. wg (250-Pa) differential static pressure.
 b. Pressure Drop: 0.05-in. wg (12.5 Pa) at 1500 fpm (7.6 m/s) across a 24-by-24-inch (600-by-600-mm) damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 6000 fpm (30 m/s).
 d. Temperature: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.
 f. Damper shall have AMCA seal for both air leakage and air performance.
 3. Construction:
 a. Frame:
 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.07 inch (1.8 mm) thick.
 2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch (25 mm).
 3) Width not less than 5 inches (125 mm).
 b. Blades:
1) Hollow, airfoil, extruded aluminum.
2) Parallel or opposed blade configuration as required by application.
3) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.07 inch (1.8 mm) thick.
4) Width not to exceed 6 inches (150 mm).
5) Length as required by close-off pressure, not to exceed 48 inches (1200 mm).

c. Seals:
 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
 2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch- (13-mm-) diameter stainless steel, mechanically attached to blades.

e. Bearings:
 1) Molded synthetic or stainless-steel sleeve mounted in frame.
 2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:
 1) Concealed in frame.
 2) Constructed of aluminum and stainless steel.
 3) Hardware: Stainless steel.

g. Transition:
 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 3) Damper size and sleeve shall be connection size plus 2 inches (50 mm).
 4) Sleeve length shall be not less than 12 inches (300 mm) for dampers without jackshafts and shall be not less than 16 inches (450 mm) for dampers with jackshafts.
 5) Sleeve material shall match adjacent duct.

h. Additional Corrosion Protection for Corrosive Environments:
 1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch (0.018 mm) thick.
 2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.

4. Airflow Measurement:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Ruskin Company
 b. Where indicated, provide damper assembly with integral airflow monitoring.
 c. Zero- to 10-V dc or 4- to 20-mA scaled output signal for remote monitoring of actual airflow.
 d. Accuracy shall be within 5 percent of the actual flow rate between the range of minimum and design airflow. For applications with a large variation in range between the minimum and design airflow, configure the damper sections and flow measurement assembly as required to comply with the stated accuracy over the entire modulating range.
e. Provide a straightening device as part of the flow measurement assembly to achieve the specified accuracy with configuration indicated.

f. Suitable for operation in untreated and unfiltered air.

g. Provide temperature and altitude compensation and correction to maintain accuracy over temperature range encountered at site altitude.

h. Provide automatic zeroing feature.

5. Airflow Control:

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Ruskin Company

b. Where indicated, provide damper assembly with integral airflow measurement and control.

c. A factory-furnished and -calibrated controller shall be programmed, in nonvolatile EPROM, with application-specific airflow set point and range.

d. The controller and actuator shall communicate to control the desired airflow.

e. The controller shall receive a zero- to 10-V dc input signal and report a zero- to 20-mA output signal that is proportional to the airflow.

f. Airflow measurement and control range shall be suitable for operation between 150 to 2000 fpm (0.8 to 10 m/s).

g. Ambient Operating Temperature Range: Minus 40 to plus 140 deg F (Minus 40 to plus 60 deg C).

h. Ambient Operating Humidity Range: 5 to 95 percent relative humidity, non-condensing.

i. Provide unit with control transformer rated for not less than 85 VA. Provide transformer with primary and secondary protection and primary disconnecting means. Coordinate requirements with field power connection.

j. Provide screw terminals for interface to field wiring.

k. Factory mount electronics within a NEMA 250, Type 1 painted steel enclosure.

C. Rectangular Dampers with Steel Airfoil Blades:

1. Manufactures: Subject to compliance with requirements, provide products by one of the following:
 a. Ruskin Company

2. Performance:

a. Leakage: AMCA 511, Class 1A. Leakage shall not exceed 3 cfm/sq. ft. (15.2 L/s per sq. m) against 1-in. wg (250-Pa) differential static pressure.

b. Pressure Drop: 0.06-in. wg (15 Pa) at 1500 fpm (7.6 m/s) across a 24-by-24-inch (600-by-600-mm) damper when tested according to AMCA 500-D, figure 5.3.

c. Velocity: Up to 6000 fpm (30 m/s).

d. Temperature: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.

f. Damper shall have AMCA seal for both air leakage and air performance.

3. Construction:

a. Frame:
1) Material: ASTM A 653/A 653M galvanized-steel profiles, 0.06 inch (1.6 mm) thick.
2) Hat-shaped channel with integral flanges. Mating face shall be a minimum of 1 inch (25 mm).
3) Width not less than 5 inches (125 mm).

b. Blades:
1) Hollow, airfoil, galvanized steel.
2) Parallel or opposed blade configuration as required by application.
3) Material: ASTM A 653/A 653M galvanized steel, 0.05 inch (1.3 mm) thick.
4) Width not to exceed 6 inches (150 mm).
5) Length as required by close-off pressure, not to exceed 48 inches (1200 mm).

c. Seals:
1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch- (13-mm-) diameter stainless steel, mechanically attached to blades.

e. Bearings:
1) Stainless steel mounted in frame.
2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:
1) Concealed in frame.
2) Constructed of aluminum and stainless steel.
3) Hardware: Stainless steel.

g. Transition:
1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
2) Factory mount damper in a sleeve with a close transition to mate to field connection.
3) Damper size and sleeve shall be connection size plus 2 inches (50 mm).
4) Sleeve length shall be not less than 12 inches (300 mm) for dampers without jackshafts and shall be not less than 16 inches (450 mm) for dampers with jackshafts.
5) Sleeve material shall match adjacent duct.

h. Additional Corrosion Protection for Corrosive Environments:
1) Provide epoxy finish for surfaces in contact with airstream.
2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.

D. Rectangular Dampers with Aluminum Flat Blades:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Ruskin Company
2. Performance:
a. Leakage: Leakage shall not exceed 3.2 cfm/sq. ft. (16.2 L/s per sq. m) against 1-in. wg (250-Pa) differential static pressure.
b. Pressure Drop: 0.07-in. wg (17.5 Pa) at 1500 fpm (7.6 m/s) across a 24-by-24-inch (600-by-600-mm) damper when tested according to AMCA 500-D, figure 5.3.

c. Velocity: Up to 2000 fpm (10 m/s).

d. Temperature: Minus 50 to plus 250 deg F (Minus 46 to plus 121 deg C).

e. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length, not to exceed 3-in. wg (750 Pa).

f. Damper shall have AMCA seal for both air leakage and air performance.

3. Construction:

a. Frame:
 1) Material: ASTM B 211, Alloy 6063-T5 extruded-aluminum profiles, 0.12 inch (3.2 mm) thick.
 2) Hat-shaped channel with integral flanges.
 3) Width not less than 5 inches (125 mm).

b. Blades:
 1) Flat blades of extruded aluminum.
 2) Parallel or opposed blade configuration as required by application.
 3) Material: ASTM B 211, Alloy 6063-T5 extruded-aluminum profiles, 0.12 inch (3.2 mm) thick.
 4) Width not to exceed 6 inches (150 mm).
 5) Length as required by close-off pressure, not to exceed 48 inches (1200 mm).

c. Seals:
 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl or plastic composite.
 2) Jambs: Stainless steel, compression type.

d. Axles: 0.5-inch- ((13-mm-))diameter stainless steel, mechanically attached to blades.

e. Bearings:
 1) Molded-synthetic sleeve, mounted in frame.
 2) Where blade axles are installed in vertical position, provide thrust bearings.

f. Linkage:
 1) Concealed in frame.
 2) Constructed of stainless steel.
 3) Hardware: Stainless steel.

g. Transition:
 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 3) Damper size and sleeve shall be connection size plus 2 inches (50 mm).
 4) Sleeve length shall be not less than 12 inches (300 mm) for dampers without jackshafts and shall be not less than 16 inches (450 mm) for dampers with jackshafts.
 5) Sleeve material shall match adjacent duct.

h. Additional Corrosion Protection for Corrosive Environments:
1) Provide anodized finish for aluminum surfaces in contact with airstream. Anodized finish shall be a minimum of 0.0007 inch (0.018 mm) thick.

2) Axles, damper linkage, and hardware shall be constructed of Type 316L stainless steel.

E. Rectangular Dampers with Steel Flat Blades:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ruskin Company

2. Performance:
 a. Leakage: Leakage shall not exceed 4.8 cfm/sq. ft. (24.3 L/s per sq. m) against 1-in. wg (250-Pa) differential static pressure.
 b. Pressure Drop: 0.1-in. wg (25 Pa) at 1500 fpm (7.6 m/s) across a 24-by-24-inch (600-by-600-mm) damper when tested according to AMCA 500-D, figure 5.3.
 c. Velocity: Up to 1500 fpm (7.6 m/s).
 d. Temperature: Minus 25 to plus 180 deg F (Minus 32 to plus 82 deg C).
 e. Pressure Rating: Damper close-off pressure equal to fan shut off pressure with a maximum blade deflection of 1/200 of blade length, not to exceed 4-in. wg (1000 Pa).
 f. Damper shall have AMCA seal for both air leakage and air performance.

3. Construction:
 a. Frame:
 1) Material: Galvanized steel, 0.06 inch (1.6 mm) thick.
 2) Hat-shaped channel with integral flanges.
 3) Width not less than 5 inches (125 mm).
 b. Blades:
 1) Flat blades with multiple grooves positioned axially for reinforcement.
 2) Parallel or opposed blade configuration as required by application.
 3) Material: Galvanized steel, 0.06 inch (1.6 mm) thick.
 4) Width not to exceed 6 inches (150 mm).
 5) Length as required by close-off pressure, not to exceed 48 inches (1200 mm).
 c. Seals:
 1) Blades: Replaceable, mechanically attached, PVC-coated polyester.
 2) Jambs: Stainless steel, compression type.
 d. Axles: 0.5-inch- (13-mm-) diameter stainless steel, mechanically attached to blades.
 e. Bearings:
 1) Molded-synthetic sleeve, mounted in frame.
 2) Where blade axles are installed in vertical position, provide thrust bearings.
 f. Linkage:
 1) Concealed in frame.
 2) Constructed of stainless steel.
 3) Hardware: Stainless steel.
2.3 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

A. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.

B. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.

C. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.

D. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.

E. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.

F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.

G. Provide mounting hardware and linkages for connecting actuator to damper.

H. Select actuators to fail in desired position in the event of a power failure.

I. Actuator Fail Positions: As indicated below:
 1. Exhaust Air: Last position.
 2. Outdoor Air: Last position.
 4. Return Air: Last position.

2.4 ELECTRIC AND ELECTRONIC ACTUATORS

A. Type: Motor operated, with or without gears, electric and electronic.

B. Voltage:
 1. See Drawings.
 2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.

C. Construction:
 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.

D. Field Adjustment:
1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.

E. Two-Position Actuators: Single direction, spring return or reversing type.

F. Modulating Actuators:
1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
2. Control Input Signal:
 a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for 2- to 10-V dc signals.
 c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink or source controller.
 d. Programmable Multi-Function:
 1) Control input, position feedback, and running time shall be factory or field programmable.
 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 3) Service data, including at a minimum, number of hours powered and number of hours in motion.

G. Position Feedback:
1. Where indicated, equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
2. Where indicated, equip modulating actuators with a position feedback through current signal for remote monitoring.
3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.

H. Fail-Safe:
1. Where indicated, provide actuator to fail to an end position.
2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
I. Integral Overload Protection:
 1. Provide against overload throughout the entire operating range in both directions.
 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.

J. Damper Attachment:
 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.

K. Temperature and Humidity:
 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F (minus 29 to plus 49 deg C).
 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.

L. Enclosure:
 1. Suitable for ambient conditions encountered by application.
 2. NEMA 250, Type 2 for indoor and protected applications.
 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 4. Provide actuator enclosure with a heater and controller where required by application.

M. Stroke Time:
 1. Operate damper from fully closed to fully open within 60 seconds.
 2. Operate damper from fully open to fully closed within 60 seconds.
 3. Move damper to failed position within 15 seconds.
 4. Select operating speed to be compatible with equipment and system operation.
 5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.

N. Sound:
 1. Spring Return: 62 dBA.
 2. Non-Spring Return: 45 dBA.

PART 3 - EXECUTION

3.1 CONTROL-DAMPER APPLICATIONS

A. Control Dampers:

B. Select from damper types indicated in "Control Dampers" Article to achieve performance requirements and characteristics indicated while subjected to full range of system operation encountered.
1. Rectangular Exhaust Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
2. Round Exhaust Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
3. Rectangular Outdoor Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
4. Round Outdoor Air Duct: Rectangular dampers with aluminum airfoil blades.
5. Rectangular Return Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
6. Round Return Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
7. Rectangular Supply Air Duct Applications: Rectangular dampers with aluminum airfoil blades.
8. Round Supply Air Duct Applications: Rectangular dampers with aluminum airfoil blades.

3.2 INSTALLATION, GENERAL

A. Furnish and install products required to satisfy most stringent requirements indicated.

B. Properly support dampers and actuators, tubing, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.

C. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

D. Seal penetrations made in fire-rated and acoustically rated assemblies.

E. Fastening Hardware:
 1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.

F. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

G. Corrosive Environments:
 1. Use products that are suitable for environment to which they will be subjected.
 2. If possible, avoid or limit use of materials in corrosive environments, including, but not limited to, the following:
 a. Laboratory exhaust airstreams.
b. Process exhaust airstreams.

3. Use Type 316 stainless-steel tubing and fittings when in contact with a corrosive environment.

4. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.

5. Where actuators are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

A. Furnish and install electrical power to products requiring electrical connections.

B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."

C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.4 CONTROL DAMPERS

A. Install smooth transitions, not exceeding 15 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.

B. Clearance:
 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
 2. Install dampers with at least 24 inches (600 mm) of clear space on sides of dampers requiring service access.

C. Service Access:
 1. Dampers and actuators shall be accessible for visual inspection and service.
 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 23 33 00 "Air Duct Accessories."

D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.

E. Attach actuator(s) to damper drive shaft.
F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.

G. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

H. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems." Section 16075 "Electrical Identification."

I. Install engraved phenolic nameplate with damper identification on damper and on face of ceiling where damper is concealed above ceiling.

3.5 CHECKOUT PROCEDURES

A. Control-Damper Checkout:
 1. Check installed products before continuity tests, leak tests, and calibration.
 2. Check dampers for proper location and accessibility.
 3. Verify that control dampers are installed correctly for flow direction.
 4. Verify that proper blade alignment, either parallel or opposed, has been provided.
 5. Verify that damper frame attachment is properly secured and sealed.
 6. Verify that damper actuator and linkage attachment are secure.
 7. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 8. Verify that damper blade travel is unobstructed.

3.6 ADJUSTMENT, CALIBRATION, AND TESTING:

A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.

B. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.

C. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 23 09 23.12
SECTION 23 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
4. Valves.
5. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 100 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: More than 0.5 psig but not more than 2 psig.

C. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.

D. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

C. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Detail fabrication and assembly of seismic restraints.
2. Design Calculations: Calculate requirements for selecting seismic restraints.
1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.
B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flash Sheild.
 b. OmegaFlex.
 c. Parker Hannifin Corp.
 d. Tru-Flex Metal Hose Corp.
 3. Coating: PE with flame retardant.
WEST YELLOWSTONE SCHOOLS
CLASSROOM ADDITION
WEST YELLOWSTONE, MONTANA

a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig.

C. Annealed-Temper Copper Tube: Comply with ASTM B 88, Type K.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.
 3. Protective Coating for Underground Tubing: Factory-applied, extruded PE a minimum of 0.022 inch thick.

D. PE Pipe: ASTM D 2513, SDR 11.
 1. PE Fittings: ASTM D 2683, socket-fusion type or ASTM D 3261, butt-fusion type with dimensions matching PE pipe.
 2. PE Transition Fittings: Factory-fabricated fittings with PE pipe complying with ASTM D 2513, SDR 11; and steel pipe complying with ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 b. Casing: Steel pipe complying with ASTM A 53/A 53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 c. Aboveground Portion: PE transition fitting.
 d. Outlet shall be threaded or suitable for welded connection.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
 a. Underground Portion: PE pipe complying with ASTM D 2513, SDR 11 inlet connected to steel pipe complying with ASTM A 53/A 53M, Schedule 40, Type E or S, Grade B, with corrosion-protective coating for aboveground outlet.
 b. Outlet shall be threaded or suitable for welded connection.
 c. Bridging sleeve over mechanical coupling.
 d. Factory-connected anode.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.
2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 4. Corrugated stainless-steel tubing with polymer coating.
 5. Operating-Pressure Rating: 0.5 psig.
 8. Maximum Length: 72 inches

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor or outdoor applications.
 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:
 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Manufacturing Co.
 b. BrassCraft Manufacturing.
 c. Conbraco Industries', Inc.
 e. Perfection Corporation.
 3. Ball: Chrome-plated brass.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Manufacturing Co.
 b. BrassCraft Manufacturing.
 c. Conbraco Industries', Inc.
 e. Perfection Corporation.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig.
9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Manufacturing Co.
 b. BrassCraft Manufacturing.
 c. Conbraco Industries', Inc.
 d. Lyall, R.W, & Company.
 e. Perfection Corporation.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Bronze Plug Valves: MSS SP-78.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kerotest Manufacturing Co.
 c. Perfection Corporation.
 5. Operator: Square head or lug type with tamperproof feature where indicated.
 6. Pressure Class: 125 psig.
 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

G. PE Ball Valves: Comply with ASME B16.40.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Kerotest Manufacturing Co.
 c. Perfection Corporation.
 2. Body: PE.
 3. Ball: PE.
5. Seats and Seals: Nitrile.
6. Ends: Plain or fusible to match piping.
7. CWP Rating: 80 psig.
8. Operating Temperature: Minus 20 to plus 140 deg F.
9. Operator: Nut or flat head for key operation.
10. Include plastic valve extension.
11. Include tamperproof locking feature for valves where indicated on Drawings.

H. Valve Boxes:
1. Cast-iron, two-section box.
2. Top section with cover with "GAS" lettering.
3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
4. Adjustable cast-iron extensions of length required for depth of bury.
5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

A. Electrically Operated Valves: Comply with UL 429.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dungs, Karl, Inc.
 b. Eclipse Innovative Thermal.
 c. Goyen Valve Corporation.
 d. Magnatrol Valve Corporation.
 e. Parker Hannifin Corporation.
 f. Watts.
2. Pilot operated.
3. Body: Brass or aluminum.
5. Springs and Valve Trim: Stainless steel.
6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
7. NEMA ICS 6, Type 4, coil enclosure.

2.6 EARTHQUAKE VALVES

A. Earthquake Valves: Comply with ASCE 25.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Vanguard Valves, Inc.
2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
3. Maximum Operating Pressure: 5 psig.
5. Nitrile-rubber valve washer.
7. Threaded end connections complying with ASME B1.20.1.
8. Wall mounting bracket with bubble level indicator.

B. Earthquake Valves: Comply with ASCE 25.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Pacific Seismic Products.
 2. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 4. Cast-aluminum body with stainless-steel internal parts.
 6. Valve position, open or closed, indicator.
 7. Composition valve seat with clapper held by spring or magnet locking mechanism.
 8. Level indicator.

2.7 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Actaris.
 b. American Meter Company.
 c. Eclipse Innovative Thermal Technologies.
 d. Invensys.
 e. Itron Gas.
 f. Maxitrol Company.
 g. Richards Industries.
 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 6. Orifice: Aluminum; interchangeable.
 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Eaton.
 d. Maxitrol Company.
 e. SCP, Inc.
 5. Seat Disc: Nitrile rubber.
 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.8 DIELECTRIC UNIONS

A. Dielectric Unions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Manufacturing Company.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industries Unions.
 e. Jomar Valve.
 f. Matco-Norca.
 g. Watts.
 h. Wilkins.
 i. Zurn Industries, LLC.
 2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.
2.9 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 54 for installation and purging of natural-gas piping.

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.
 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Install underground, PE, natural-gas piping according to ASTM D 2774.

D. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 3. Replace pipe having damaged PE coating with new pipe.

E. Copper Tubing with Protective Coating:
 1. Apply joint cover kits over tubing to cover, seal, and protect joints.
 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.

F. Install fittings for changes in direction and branch connections.

G. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.2 INDOOR PIPING INSTALLATION

A. Comply with NFPA 54 for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.

S. Do not use natural-gas piping as grounding electrode.
T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves above ground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

G. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 1. Plain-End Pipe and Fittings: Use butt fusion.
 2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.5 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.

D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.
D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

A. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

A. Test, inspect, and purge natural gas according to NFPA 54 and authorities having jurisdiction.

B. Natural-gas piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be one of the following:
 1. PE pipe and fittings joined by heat fusion; service-line risers with tracer wire terminated in an accessible location.
 2. Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
 3. Annealed-temper copper tube with wrought-copper fittings and brazed joints. Coat pipe and fittings with protective coating for copper tubing.

B. Aboveground natural-gas piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.
 3. Annealed-temper copper tube with wrought-copper fittings and brazed joints.

C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
3.10 INDOOR PIPING SCHEDULE

A. Aboveground, branch piping NPS 1 and smaller shall be one of the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.
 2. Annealed-temper copper tube with wrought-copper fittings and brazed joints.
 3. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Underground, below building, piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

E. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.11 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.

B. Underground: PE valves.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, regular-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, regular-port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance shall be one of the following:
 1. One-piece, bronze ball valve with bronze trim.
 2. Two-piece, regular-port, bronze ball valves with bronze trim.
SECTION 23 21 13.13 - UNDERGROUND HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Copper tube and fittings.
 2. Steel pipes and fittings.
 3. Ductile-iron pipe and fittings.
 4. Plastic pipe and fittings.
 5. Transition fittings.
 6. Conduit piping system.
 7. Cased piping system.

1.2 PERFORMANCE REQUIREMENTS

A. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 1. Hot-Water Piping: 100 psig (690 kPa) at 200 deg F (93 deg C).

1.3 ACTION SUBMITTALS

A. Product Data: For the following:
 1. Conduit piping.
 2. Cased piping.

B. Shop Drawings: For underground hydronic piping. Signed and sealed by a professional engineer.
 1. Calculate requirements for expansion compensation for underground piping.
 2. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement in the required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 3. Show pipe sizes, locations, and elevations. Show piping in trench, conduit, and cased pipe with details showing clearances between piping, and show insulation thickness.

1.4 INFORMATIONAL SUBMITTALS

A. Material Test Reports: For cased piping.

B. Source quality-control reports.
C. Field quality-control reports.

1.5 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type M (ASTM B 88M, Type C).

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

2.2 STEEL PIPES AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black with plain ends; type, grade, and wall thickness as indicated in "Piping Application" Article.

B. Cast-Iron, Threaded Fittings: ASME B16.4; Class 250.

D. Malleable-Iron Unions: ASME B16.39; Class 150.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Class 250; raised ground face, and bolt holes spot faced.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 2. End Connections: Butt welding.
 3. Facings: Raised face.

H. Steel Welding Fittings: ASME B16.9, seamless or welded.

I. Grooved-End-Pipe Couplings for Galvanized-Steel Piping: AWWA C606 for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.

J. Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

K. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and -bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

L. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.3 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151/A21.51, with mechanical-joint bell and plain spigot end.
 a. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 PLASTIC PIPE AND FITTINGS

A. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.5 CONDUIT PIPING SYSTEM

A. Description: Factory-fabricated and -assembled, airtight and watertight, drainable, pressure-tested piping with conduit, inner pipe supports, and insulated carrier piping. Fabricate so insulation can be dried in place by forcing dry air through conduit.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Insul-Tek Piping Systems, Inc.
 b. Perma-Pipe, Inc.
 c. Rovanco Piping Systems, Inc.
 d. Thermacor Process, L.P.
 e. Tricon Piping Systems, Inc.
B. Carrier Pipe: Schedule 80, steel pipe and fittings.

C. Carrier Pipe Insulation:
 1. Mineral-Wool Pipe Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I 850 deg F (454 deg C), Grade A.
 a. Bands: ASTM A 666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 2. Calcium Silicate Pipe Insulation: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C 533, Type I.
 a. Bands: ASTM A 666, Type 304, stainless steel, 3/4 inch (19 mm) wide, 0.020 inch (0.5 mm) thick.
 a. Comply with ASTM C 591, Type I or Type IV, except thermal conductivity (k-value) shall not exceed 0.19 Btu x in./h x sq. ft. x deg F (0.027 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.
 b. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less for thickness up to 1-1/2 inches (38 mm) as tested by ASTM E 84.
 c. Fabricate shapes according to ASTM C 450 and ASTM C 585.
 a. Comply with ASTM C 591, Type I or Type IV, except thermal conductivity (k-value) shall not exceed 0.19 Btu x in./h x sq. ft. x deg F (0.027 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.
 b. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less for thickness up to 1-1/2 inches (38 mm) as tested by ASTM E 84.
 c. Fabricate shapes according to ASTM C 450 and ASTM C 585.

D. Minimum Clearance:
 1. Between Carrier Pipe Insulation and Conduit: 1 inch (25 mm).
 2. Between Insulation of Multiple Carrier Pipes: 3/16 inch (4.75 mm).
 3. Between Bottom of Carrier Pipe Insulation and Conduit: 1 inch (25 mm).
 4. Between Bottom of Bare, Carrier Pipe and Casing: 1-3/8 inches (35 mm).

E. Conduit: Spiral wound, steel.
 1. Finish: With two coats of fusion-bonded epoxy, minimum 20 mils (0.50 mm) thick.
 2. Cover: With polyurethane foam insulation with an HDPE jacket; thickness indicated in "Piping Application" Article.
 3. Piping Supports within Conduit: Corrugated galvanized steel with a maximum spacing of 10 feet (3 m).
 4. Fittings: Factory-fabricated and insulated elbows and tees. Elbows may be bent pipe equal to carrier pipe. Tees shall be factory fabricated and insulated, and shall be compatible with the carrier pipe.
 5. Expansion Offsets and Loops: Size casing to contain piping expansion.
 6. Accessories include the following:
a. Water Shed: Terminal end protector for carrier pipes entering building through floor, 3 inches (75 mm) deep and 2 inches (50 mm) larger than casing; terminate casing 20 inches (500 mm) above the floor level.

b. Guides and Anchors: Steel plate welded to carrier pipes and to casing, complete with vent and drainage openings inside casing.

c. End Seals: Steel plate welded to carrier pipes and to casing, complete with drain and vent openings on vertical centerline.

d. Gland Seals: Packed stuffing box and gland follower mounted on steel plate, welded to end of casing, permitting axial movement of carrier piping, with drain and vent connections on vertical centerline.

e. Joint Kit: Half-shell, pourable or split insulation and shrink-wrap sleeve.

F. Manholes: Black steel with lifting eyes.
 1. Finish: Spray-applied urethane, minimum 30 mils (0.75 mm) thick.
 2. Access: 30-inch- (750-mm-) diameter waterproof cover with gasket, ladder, and two 6-inch (150-mm) vents, one high and one low, extending above grade with rain caps.
 4. Sump: 12 inches (300 mm) in diameter, 12 inches (300 mm) deep.
 5. Floatation Anchor: Oversized bottom keyed into concrete base.

G. Source Quality Control: Factory test conduit to 15 psig (105 kPa) for a minimum of two minutes with no change in pressure. Factory test carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

2.6 CASED PIPING SYSTEM

A. Description: Factory-fabricated piping with carrier pipe, insulation, and casing.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Insul-Tek Piping Systems, Inc.
 b. Perma-Pipe, Inc.
 c. Rovanco Piping Systems, Inc.
 d. Thermacor Process, L.P.
 e. Tricon Piping Systems, Inc.
 f. Urecon LTD.

B. Carrier Pipe: Schedule 80, steel pipe and fittings.

C. Carrier Pipe Insulation:
 1. Polyurethane Foam Pipe Insulation: Rigid, cellular, high-pressure injected between carrier pipe and jacket.
 a. Comply with ASTM C 591; thermal conductivity (k-value) shall not exceed 0.14 Btu x in./h x sq. ft. x deg F (0.020 W/m x K) at 75 deg F (24 deg C) after 180 days of aging.

D. Casing: Filament-wound, fiberglass-reinforced polyester resin.
E. Casing accessories include the following:
 1. Joint Kit: Half-shell, pourable or split insulation, casing sleeve, and shrink-wrap sleeve.
 2. Expansion Blanket: Elastomeric foam, formed to fit over piping.
 3. End Seals: Shrink wrap the casing material to seal watertight around casing and carrier pipe.

F. Manholes: Black steel with lifting eyes.
 1. Finish: Spray-applied urethane, minimum 30 mils (0.75 mm) thick.
 2. Access: 30-inch (750-mm) diameter waterproof cover with gasket, ladder, and two 6-inch (150-mm) vents, one high and one low, extending above grade with rain caps.
 4. Sump: 12 inches (300 mm) in diameter, 12 inches (300 mm) deep.
 5. Floatation Anchor: Oversized bottom keyed into concrete base.

G. Source Quality Control: Factory test the carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

PART 3 - EXECUTION

3.1 EARTHWORK
A. See Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATION
A. Hot-Water Heating Piping:
 1. NPS 2 (DN 50) and smaller shall be any of the following:
 a. Type L (Type B), drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 b. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 c. Schedule 5 steel pipe; steel, pressure-seal couplings and fittings; and pressure-seal joints.
 d. Schedule 40 CPVC plastic pipe and fittings and solvent-welded joints.
 2. NPS 2-1/2 (DN 65) and larger shall be any of the following:
 a. Type M (Type C), drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 b. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 c. Schedule 40 CPVC plastic pipe and fittings and solvent-welded joints.
 3. Conduit piping with mineral-wool carrier-pipe insulation and with coated and insulated conduit.
 a. Carrier Pipe Insulation Thickness: 2 inches (50 mm).
 b. Conduit Insulation Thickness: 2 inches (50 mm).
 4. Cased piping with polyurethane carrier-pipe insulation.
a. Piping Insulation Thickness: 1 inch (25 mm).

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Remove standing water in the bottom of trench.

C. Do not backfill piping trench until field quality-control testing has been completed and results approved.

D. Install piping at uniform grade of 0.2 percent. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points and elsewhere as required for system drainage. Install manual air vents at high points.

E. In conduits, install drain valves at low points and manual air vents at high points.

F. Install components with pressure rating equal to or greater than system operating pressure.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. See Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping" for sleeves and mechanical sleeve seals through exterior building walls.

J. Secure anchors with concrete thrust blocks. Concrete is specified in Section 03 30 00 "Cast-in-Place Concrete."

K. See Section 26 42 00 "Cathodic Protection" for cathodic devices and connections to piping and conduit systems.

3.4 JOINT CONSTRUCTION

A. See Section 33 05 00 "Common Work Results for Utilities" for basic piping joint construction.

B. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.

C. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
D. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

E. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

F. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Ch. 35, "Pipe and Tubing," using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

I. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

J. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.

K. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.

L. Conduit and Cased Piping Joints: Assemble sections and finish joints with pourable or split insulation and exterior jacket sleeve, and apply shrink-wrap seals.

3.5 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic piping. Locate tapes 6 to 8 inches (150 to 200 mm) below finished grade, directly over piping. See Section 31 20 00 "Earth Moving" for warning-tape materials and devices and their installation.
3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 a. Leave joints, including welds, uninsulated and exposed for examination during test.
 b. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 c. Use vents installed at high points to release trapped air while filling system.
 2. Test hydronic piping as follows:
 a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.
 b. After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
 3. Test conduit as follows:
 a. Seal vents and drains and subject conduit to 15 psig (105 kPa) for four hours with no loss of pressure. Repair leaks and retest as required.

B. Prepare test and inspection reports.

END OF SECTION 23 21 13.13
SECTION 23 21 13 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Hot-water heating piping.
 2. Blowdown-drain piping.
 3. Air-vent piping.
 4. Safety-valve-inlet and outlet piping.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Plastic pipe and fittings with solvent cement.
 2. RTRP and RTRF with adhesive.
 3. Pressure-seal fittings.

B. Delegated-Design Submittal:
 1. Design calculations and detailed fabrication and assembly of pipe anchors and
 alignment guides, hangers and supports for multiple pipes, expansion joints and
 loops, and attachments of the same to the building structure.
 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 3. Locations of and details for penetrations, including sleeves and sleeve seals for
 exterior walls, floors, basement, and foundation walls.
 4. Locations of and details for penetration and firestopping for fire- and smoke-rated
 wall and floor and ceiling assemblies.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for
 materials, products, and installation.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Hot-Water Heating Piping: 200psig at 200 deg F.
 2. Condensate-Drain Piping: 150 deg F.
 3. Blowdown-Drain Piping: 200 deg F.
 4. Air-Vent Piping: 200 deg F.
 5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
C. DWV Copper Tubing: ASTM B 306, Type DWV.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Star Pipe Products.
 c. Victaulic Company.
 2. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
 3. Grooved-End-Tube Couplings: Rigid pattern unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.
E. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.
D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
2. End Connections: Butt welding.
3. Facings: Raised face.

G. Grooved Mechanical-Joint Fittings and Couplings:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. Central Sprinkler Company.
 c. Grinnell Mechanical Products.
 d. National Fittings, Inc.
 e. Nexus Valve, Inc.
 f. S.P. Fittings.
 g. Smith-Cooper International
 h. Star Pipe Products.
 i. Victaulic Company.
2. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
3. Couplings: Ductile- or malleable-iron housing and EPDM gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

2.4 PLASTIC PIPE AND FITTINGS

A. CPVC Plastic Pipe: ASTM F 441/F 441M, with wall thickness as indicated in "Piping Applications" Article.

B. PVC Plastic Pipe: ASTM D 1785, with wall thickness as indicated in "Piping Applications" Article.
2.5 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

F. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

G. Solvent Cements for Joining Plastic Piping:
 1. CPVC Piping: ASTM F 493.
 a. CPVC solvent cement shall have a VOC content of 490 g/L or less.
 b. Adhesive primer shall have a VOC content of 550 g/L or less.
 c. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 a. PVC solvent cement shall have a VOC content of 510 g/L or less.
 b. Adhesive primer shall have a VOC content of 550 g/L or less.
 c. Solvent cement and adhesive primer shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

H. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.6 TRANSITION FITTINGS

A. Plastic-to-Metal Transition Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. IPEX USA LLC.
c. KBI (King Bros. Industries).
d. Viega LLC.

2. One-piece fitting with one threaded brass or copper insert and one solvent-cement-joint end of material and wall thickness to match plastic pipe material.

B. Plastic-to-Metal Transition Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. IPEX USA LLC.
 c. KBI (King Bros. Industries).
 d. NIBCO Inc.

2. Brass or copper end, solvent-cement-joint end of material and wall thickness to match plastic pipe material, rubber gasket, and threaded union.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A.Y. McDonald Manufacturing Company.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
 e. Jomar Valve.
 f. Matco-Norca.
 g. Watts.
 h. Wilkins.
 i. Zurn Industries, LLC.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 BYPASS CHEMICAL FEEDER

A. Description: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.

1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.
3.1 PIPING APPLICATIONS

A. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40, Grade B, Type 96 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 3. Schedule 80 CPVC plastic pipe and fittings and solvent-welded joints.

B. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 1. Type M, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 3. Schedule 80 CPVC plastic pipe and fittings and solvent-welded joints.

C. Hot-Water Heating Piping Installed Belowground and within Slabs: Type K, annealed-temper copper tubing, wrought-copper fittings, and brazed joints. Use the fewest possible joints.

D. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

E. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.

F. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

G. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

H. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to Section 23 05 23.11 "Globe Valves for HVAC Piping," Section 23 05 23.12 "Ball Valves for HVAC Piping," Section 23 05 23.13 "Butterfly Valves for HVAC Piping," Section 23 05 23.14 "Check Valves for HVAC Piping," and Section 23 05 23.15 "Gate Valves for HVAC Piping."

Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.
T. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for identifying piping.

U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for seismic restraints.

C. Install the following pipe attachments:
 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 4. Spring hangers to support vertical runs.
 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.

D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 7 feet.
 2. NPS 1: Maximum span, 7 feet.
 3. NPS 1-1/2: Maximum span, 9 feet.
 4. NPS 2: Maximum span, 10 feet.
 5. NPS 2-1/2: Maximum span, 11 feet.
 6. NPS 3 and Larger: Maximum span, 12 feet.
E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.

F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

G. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.

4. PVC Nonpressure Piping: Join according to ASTM D 2855.

H. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.7 CHEMICAL TREATMENT

A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

C. Fill systems that have antifreeze or glycol solutions with the following concentrations:

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.

C. Perform the following before operating the system:
1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 23 21 13
SECTION 23 21 23 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Close-coupled, end-suction centrifugal pumps.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of pump.
B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 CLOSE-COUPLED, END-SUCTION CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Armstrong Pumps, Inc.
 2. Aurora Pump
 3. Crane Pumps & Systems
 4. Flo Fab Inc.
 5. Flowserve Corporation
 6. Grundfos Pumps Corporation
 7. ITT Corporation
 8. Mepco, LLC
 9. PACO pumps
 10. Patterson Pump Company
 11. Peerless Pump Company
 12. TACO, Inc.
 13. Thrush Co.
B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, end-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally.

C. Pump Construction:
1. Casing: Radially split, cast iron, with replaceable bronze wear rings, drain plug at bottom and air vent at top of volute, threaded gage tappings at inlet and outlet, and flanged connections.
2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
4. Mechanical Seal: Carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
5. Pump Bearings: Permanently lubricated ball bearings.

D. Motor: Single speed and rigidly mounted to pump casing with integral pump support.
1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 a. Enclosure: Totally enclosed, air over.
 b. Enclosure Materials: Cast iron.
 c. Motor Bearings: Permanently lubricated ball bearings.
 d. Unusual Service Conditions:
 1) Ambient Temperature: 95 F.
 2) Altitude: 6666 feet above sea level.
 3) High humidity.
 e. Efficiency: Premium efficient.

E. Capacities and Characteristics:
2. Total Dynamic Head: 60 ft.
4. Maximum Continuous Operating Temperature: 225 deg F.
5. Inlet and Outlet Size: 4", 3".
8. Electrical Characteristics:
 a. Volts: 120.
 b. Phase: Single.
 c. Hertz: 60.
2.2 PUMP SPECIALTY FITTINGS

A. Suction Diffuser:
 1. Angle pattern.
 2. 175-psig pressure rating, cast-iron body and end cap, pump-inlet fitting.
 3. Bronze startup and bronze or stainless-steel permanent strainers.
 4. Bronze or stainless-steel straightening vanes.
 5. Drain plug.
 6. Factory-fabricated support.

B. Triple-Duty Valve:
 1. Angle or straight pattern.
 2. 175-psig pressure rating, cast-iron body, pump-discharge fitting.
 3. Drain plug and bronze-fitted shutoff, balancing, and check valve features.
 4. Brass gage ports with integral check valve and orifice for flow measurement.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.

D. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.

E. Equipment Mounting:
 1. Install base-mounted pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete." Section 03 30 53 "Miscellaneous Cast-in-Place Concrete."
 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 3. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."

F. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and elastomeric hangers of size required to support weight of in-line pumps.
 1. Comply with requirements for seismic-restraint devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 2. Comply with requirements for hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."
3.2 ALIGNMENT

A. Engage a factory-authorized service representative to perform alignment service.

B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

C. Comply with pump and coupling manufacturers' written instructions.

D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to pump, allow space for service and maintenance.

C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.

E. Install check, shutoff, and throttling valves on discharge side of pumps.

F. Install Y-type strainer and shutoff valve on suction side of pumps.

G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

I. Install check valve and gate or ball valve on each condensate pump unit discharge.

J. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

K. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 23 21 23
SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular ducts and fittings.
 2. Round ducts and fittings.
 4. Sealants and gaskets.
 5. Hangers and supports.

B. Related Sections:
 1. Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 23 33 00 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7.
 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:
 1. Product Data for Prerequisite IEQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."
2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

3. Duct-Cleaning Test Report for Prerequisite IEQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 - "Ventilation System Start-up."

4. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.

5. Laboratory Test Reports for Credit IEQ 4: For adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of main duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

D. Delegated-Design Submittal:
 1. Sheet metal thicknesses.
 2. Joint and seam construction and sealing.
 3. Reinforcement details and spacing.
 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 2. Suspended ceiling components.
 3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

1.5 QUALITY ASSURANCE

B. Welding Qualifications: Qualify procedures and personnel according to the following:

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements,
materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ductmate Industries, Inc.
 b. Lindab Inc.
 c. McGill Airflow LLC
 d. SEMCO LLC
 e. Sheet Metal Connectors, Inc.
 f. Spiral Manufacturing Company

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2.3 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:
 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 2. Tape Width: 4 inches.
 5. Mold and mildew resistant.
 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible,” Table 5-1, “Rectangular Duct Hangers Minimum Size,” and Table 5-2, "Minimum Hanger Sizes for Round Duct.”

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.6 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. B-line, and Eaton business
 2. Ductmate Industries, Inc.
 3. Hilti, Inc.
 5. Loos & Co.
 6. Mason Industries, Inc.
 7. TOLCO
 8. Unistrut

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. [Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."]

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":
 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. Outdoor, Supply-Air Ducts: Seal Class A.
 3. Outdoor, Exhaust Ducts: Seal Class C.
 4. Outdoor, Return-Air Ducts: Seal Class C.
 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2.Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 2. Brace a change of direction longer than 12 feet.

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."

B. Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.
 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 23 33 00 "Air Duct Accessories" for access panels and doors.
 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 3. Remove and reinstall ceiling to gain access during the cleaning process.
C. Particulate Collection and Odor Control:
 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
 1. Air outlets and inlets (registers, grilles, and diffusers).
 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 6. Provide drainage and cleanup for wash-down procedures.
 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.8 START UP

A. Air Balance: Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."
3.9 DUCT SCHEDULE

A. Supply Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 1-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
 2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

B. Return Ducts:
 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Exhaust Ducts:
 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
 3. Ducts Connected to Equipment Not Listed Above:
a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.
2. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Intermediate Reinforcement:
2. PVC-Coated Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.

F. Elbow Configuration:
1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanese and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanese and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

G. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.
 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13
SECTION 23 33 00 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Control dampers.
 4. Fire dampers.
 5. Smoke dampers.
 6. Flange connectors.
 7. Turning vanes.
 8. Duct-mounted access doors.
 10. Flexible ducts.
 11. Duct accessory hardware.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper and smoke-damper installations, including sleeves; and duct-mounted access doors.
 e. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.
PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and No. 2 finish for exposed ducts.

C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating.
 2. Cesco Products.
 3. Flex-Tek Group.
 5. Lloyd Industries, Inc.
 7. NCA Manufacturing, Inc.
 8. Potterff.
 10. Vent Products Co. Inc.
B. Description: Gravity balanced.

D. Maximum System Pressure: 3-inch wg.

E. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width, 0.025-inch- thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Felt.

I. Blade Axles:
 2. Diameter: Insert value.

J. Tie Bars and Brackets: Galvanized steel.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
 4. Chain pulls.
 5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
 6. Screen Mounting: Rear mounted.
 7. Screen Material: Galvanized steel.
 8. Screen Type: Bird.
 9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aire Technologies.
 b. American Warming and Ventilation.
 c. Flexmaster U.S.A., Inc.
 d. McGill AirFlow LLC.
 e. Nailor Industries Inc.
f. Pottorff.
g. Ruskin Company.
h. Trox USA Inc.
i. Vent Products Co., Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized-steel, 0.064 inch thick.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Standard, Aluminum, Manual Volume Dampers:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. American Warming and Ventilating.
 b. McGill Airflow LLC.
 c. Nailor Industries Inc.
 d. Pottorff.
 e. Ruskin Company.
 f. Trox USA Inc.
 g. Vent Products Co., Inc.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.

7. Bearings:
 a. Oil-impregnated bronze.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Aluminum.
C. Jackshaft:
 1. Size: 0.5-inch diameter.
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

D. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventalating.
 2. Arrow United Industries.
 3. Cesco Products.
 5. Greenheck Fan Corporation.
 6. Lloyd Industries, Inc.
 7. McGill AirFlow LLC.
 8. Metal Form Manufacturing, Inc.
 10. NCA Manufacturing, Inc.
 11. Pottorff.
 12. Ruskin Company.
 13. Vent Products Co., Inc.

B. Frames:
 1. Hat shaped.
 2. 0.094-inch- thick, galvanized sheet steel.
 3. Mitered and welded corners.

C. Blades:
 1. Multiple blade with maximum blade width of 6 inches.
 2. Parallel-blade design.
 4. 0.064 inch thick single skin.

D. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
E. **Bearing:**
 1. Oil-impregnated bronze.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.6 **FIRE DAMPERS**

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aire Technologies.
 2. American Warming and Ventilating.
 3. Arrow United Industries.
 5. Greenheck Fan Corporation.
 6. Nailor Industries Inc.
 7. NCA Manufacturing, Inc.
 8. Potterff.
 10. Ruskin Company.
 11. Vent Products Co., Inc.

B. **Type:** Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. **Fire Rating:** 3 hours.

E. **Frame:** Curtain type with blades inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.

F. **Mounting Sleeve:** Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.05 thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

G. **Mounting Orientation:** Vertical or horizontal as indicated.

H. **Blades:** Roll-formed, interlocking, 0.024-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.

I. **Horizontal Dampers:** Include blade lock and stainless-steel closure spring.

J. **Heat-Responsive Device:** Replaceable, 212 deg F rated, fusible links.
K. **Heat-Responsive Device:** Electric, link and switch package, factory installed, 212 deg F rated.

2.7 SMOKE DAMPERS

A. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:
 1. Aire Technologies.
 2. American Warming and Ventilating.
 3. Cesco Products.
 5. Nailor Industries Inc.
 6. Pottorff.
 7. Ruskin Company.

B. **General Requirements:** Label according to UL 555S by an NRTL.

C. **Smoke Detector:** Integral, factory wired for single-point connection.

D. **Frame:** Hat-shaped, 0.094-inch thick, galvanized sheet steel, with welded corners and mounting flange.

E. **Blades:** Roll-formed, horizontal, interlocking, 0.034-inch thick, galvanized sheet steel.

F. **Leakage:** Class I.

G. **Rated pressure and velocity to exceed design airflow conditions.**

H. **Mounting Sleeve:** Factory-installed, 0.039-inch thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.

I. **Damper Motors:** Modulating action.

J. **Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."**
 1. **Motor Sizes:** Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. **Controllers, Electrical Devices, and Wiring:** Comply with requirements for electrical devices and connections specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."
 3. **Permanent-Split-Capacitor or Shaded-Pole Motors:** With oil-immersed and sealed gear trains.
 4. **Spring-Return Motors:** Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.

6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.

7. Electrical Connection: 115 V, single phase, 60 Hz.

K. Accessories:
 1. Auxiliary switches for signaling.

2.8 FLANGE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CL Ward & Family Inc.
 2. Ductmate Industries, Inc.
 3. Hardcast, Inc.
 4. Nexus PDQ.
 5. Ward Industries.

B. Description: Add-on, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.

C. Material: Galvanized steel.

D. Gage and Shape: Match connecting ductwork.

2.9 TURNING VANES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aero-Dyne Sound Control Company.
 2. CL WARD & Family Inc.
 3. Ductmate Industries, Inc.
 4. Duro Dyne Inc.
 5. Elgen Manufacturing.
 6. Hardcast, Inc.
 7. METALAIRE, Inc.
 8. SEMCO LLC.

B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Single wall.

2.10 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aire Technologies.
 2. American Warming and Ventilating.
 3. Cesco Products.
 4. CL WARD & Family Inc.
 5. Ductmate Industries, Inc.
 7. Flexmaster U.S.A., Inc.
 9. McGill AirFlow LLC.
 10. Nailor Industries Inc.
 11. Pottorff.
 12. Ventfabrics, Inc.

 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.
 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.

C. Pressure Relief Access Door:
 1. Door and Frame Material: Galvanized sheet steel.
2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
4. Factory set at 3.0- to 8.0-inch wg.
5. Doors close when pressures are within set-point range.
6. Hinge: Continuous piano.
7. Latches: Cam.
8. Seal: Neoprene or foam rubber.

2.11 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 2. Ductmate Industries, Inc.
 3. Flame Gard, Inc.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.12 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CL WARD & Family Inc.
 2. Ductmate Industries, Inc.
 3. Duro Dyne Inc.
 4. Elgen Manufacturing.
 5. Hardcast, Inc.
 6. JP Lamborn Co.
 7. Venfabrics, Inc.
 8. Ward Industries.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.
D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch wide, 0.028-inch thick, galvanized sheet steel or 0.032-inch thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F.

2.13 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. Flex-Tek Group.
 3. JP Lamborn Co.
 4. McGill AirFlow LLC.
 5. Ward Industries.

B. Noninsulated, Flexible Duct: UL 181, Class 1, 2-ply vinyl film supported by helically wound, spring-steel wire.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 10 to plus 160 deg F.

C. Insulated, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.
 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 3. Temperature Range: Minus 20 to plus 210 deg F.
 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.

D. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.
2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of Pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for
access doors installed upstream from dampers and inward operation for access
doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

I. Install access doors with swing against duct static pressure.

J. Access Door Sizes:
1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

K. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and
Equipment" to indicate the purpose of access door.

L. Install flexible connectors to connect ducts to equipment.

M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of
flexible duct. Do not use flexible ducts to change directions.

N. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch
lengths of flexible duct clamped or strapped in place.

O. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

P. Install duct test holes where required for testing and balancing purposes.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be
performed.
3. Operate fire and smoke dampers to verify full range of movement and verify that
proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.

END OF SECTION 23 33 00
SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Round ceiling diffusers.
 2. Rectangular and square ceiling diffusers.
 3. Perforated diffusers.
 4. Louver face diffusers.
 5. Fixed face registers and grilles.

B. Related Sections:
 1. Section 08 91 16 "Operable Wall Louvers" and Section 08 91 19 "Fixed Louvers" for fixed and adjustable louvers and wall vents, whether or not they are connected to ducts.
 2. Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include the following:
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Rectangular and Square Ceiling Diffusers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Anemostat Products; a Mestek company.
 c. Carnes Company.
 d. Hart & Cooley Inc.
 e. Kees, Inc.
 f. Krueger
WEST YELLOWSTONE SCHOOLS
CLASSROOM ADDITION
WEST YELLOWSTONE, MONTANA

2. Devices shall be specifically designed for variable-air-volume flows.
5. Face Size: 24 by 24 inches or 12 by 12 inches.
6. Face Style: Four cone.
10. Accessories:
 a. Equalizing grid.
 b. Plaster ring.
 c. Safety chain.
 d. Wire guard.
 e. Sectorizing baffles.
 f. Operating rod extension.

B. Perforated Diffuser:
1. Devices shall be specifically designed for variable-air-volume flows.
2. Material: Steel backpan and pattern controllers, with steel face.
4. Face Size: 12 by 12 inches 24 by 24 inches.
5. Duct Inlet: Round.
8. Pattern Controller: None.
10. Accessories:
 a. Equalizing grid.
 b. Plaster ring.
 c. Safety chain.
 d. Wire guard.
 e. Sectorizing baffles.
 f. Operating rod extension.

C. Louver Face Diffuser:
1. Devices shall be specifically designed for variable-air-volume flows.
4. Face Size: SEE SCHEDULE.
5. Mounting: Surface.
7. Dampers: Radial opposed blade.
8. Accessories:
2.2 REGISTERS AND GRILLES

A. Adjustable Bar Grille:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Anemostat Products; a Mestek company.
 c. Carnes Company.
 d. Dayus Register & Grille
 e. Hart & Cooley Inc.
 f. Kees, Inc.
 g. Krueger
 h. METALAIRE, Inc.
 i. Nailor Industries Inc.
 j. Price Industries.
 k. Raymon-Donco
 l. Shoemaker Mfg. Co
 m. Titus.
 n. Tuttle & Bailey.
6. Rear-Blade Arrangement: Horizontal spaced 1/2 inch apart.
7. Frame: 1 inch wide.

B. Fixed Face Register:
1. Material: Steel.
2. Finish: Baked enamel, color selected by Architect.
3. Face Arrangement: Perforated core.
7. Mounting: Countersunk screw.
8. Damper Type: Adjustable opposed blade.
C. Fixed Face Grille:
 1. Material: Steel.
 2. Finish: Baked enamel, color selected by Architect.
 3. Face Arrangement: Perforated core.
 7. Mounting: Countersunk screw.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install diffusers, registers, and grilles level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13
SECTION 23 82 39.19 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings:
1. Include plans, elevations, sections, and details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include details of anchorages and attachments to structure and to supported equipment.
4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.

C. Samples: For each exposed product and for each color and texture specified.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Berko.
2. Chromalox, Inc.
3. INDEECO.
4. Markel Products.
5. Marley Engineered Products.
6. Ouellet Canada Inc.
2.2 DESCRIPTION

A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

A. Front Panel: Stamped-steel louver, with removable panels fastened with tamperproof fasteners.

B. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.

C. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

2.5 FAN AND MOTOR

A. Fan: Aluminum propeller directly connected to motor.

B. Motor: Permanently lubricated. Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2.6 CONTROLS

A. Controls: Unit-mounted thermostat. Low-voltage relay with transformer kit.

B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.
CAPACITIES AND CHARACTERISTICS

A. Airflow: 1240 cfm.

B. Fan Speed: Low Speed.

C. Electrical Characteristics for Single-Point Connection:
 1. Volts: 120 V.
 2. Phase: 1 Ph.
 3. Hertz: 60 Hz.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install wall and ceiling unit heaters to comply with NFPA 90A.

B. Install wall and ceiling unit heaters level and plumb.

C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.

D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 23 82 39.19
SECTION 26 00 00 - ELECTRICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 ELECTRICAL REQUIREMENTS

A. The electrical requirements are supplemental to the General and Supplementary Conditions and the General Requirements of these Specifications. The Electrical Sections shall apply to phases of the work specified, shown on the Drawings, or required to provide for the complete installation of Electrical Systems for this project.

B. The work shall include all items, articles, materials, operations and methods listed, mentioned or scheduled in these specifications and the accompanying drawings. All material, equipment and labor shall be furnished together with all incidental items required by good practice to provide the complete systems described.

C. Examine and refer to all Architectural, Structural, Utility, Landscape and Mechanical drawings and specifications for construction conditions which may affect the electrical work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.

D. See general requirements for listed Alternate Bids. Note alternates listed and include any changes in work and price required to meet the requirements of the respective alternate.

1.2 CODES AND STANDARDS

A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following organizations:
 1. American National Standards Institute (ANSI)
 2. Americans with Disabilities Act (ADA)
 3. Certified Ballast Manufacturers (CBM)
 4. Electrical Testing Laboratories (ETL)
 5. Independent Testing Laboratories (ITL)
 7. International Fire Code (IFC)
 9. National Electrical Manufacturers Association (NEMA)
 10. National Fire Protection Association (NFPA)
 11. Occupational Safety & Health Act (OSHA)
 12. Underwriters Laboratories (UL)
 13. Rules and Regulations of the State Fire Marshal
 14. Requirements of the Serving Utility Company
 15. Local and State Codes and Ordinances
1.3 FEES AND PERMITS

A. The electrical contractor shall pay all fees and arrange for all permits required for work done under his contract and under his supervision by subcontract.

B. Cost of primary work noted to be by Utility Company not to be included in Contractor's Bid. All charges made by the Utility Company for their part of the primary work will be billed directly to the Owner and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

A. Manufacturer's trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed must have prior approval. Written prior approval must be obtained from the Architect/Engineer ten (10) business days prior to bid opening. Requests are to be submitted sufficiently ahead of the deadline to give ample time for examination. The items approved will be listed in an addendum and only this list of equipment will be accepted in lieu of specified products. Submittals must indicate the specific item or items to be furnished in lieu of those specified, together with complete technical and comparative data on specified items and proposed items.

B. Electrical equipment shall be installed with manufacturer's standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.

C. The electrical contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.

D. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by the manufacturer unless herein specified to the contrary.

E. The electrical contractor shall make the required arrangement with General Contractor for the introduction into the building of equipment too large to pass through finished openings.

F. Materials and equipment shall be stored indoors at the job site or, if this is not possible, stored on raised platforms and protected from the weather by means of waterproof covers. Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.

G. Lighting fixtures proposed as substitutes to those specified must have prior approval by Architect/Engineer as noted above. Approval will not be considered unless the request has all of the following information:
 1. Manufacturers data showing catalog number.
 2. Construction details.
 3. Photometrics.
4. Recommended maintenance factor.

1.5 INTENT OF DRAWINGS

A. The drawings are partly diagrammatic and do not necessarily show exact location of conduit unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining quantities or lineal runs of conduit. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 RESPONSIBILITY

A. The electrical contractor shall be responsible for the installation of satisfactory and complete systems in accordance with the intent of the drawings and specifications and shall provide, at no extra cost, all incidental items required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.

B. The drawings do not attempt to show complete details of the building construction which affect the electrical installation; and reference is therefore required to the Architectural, Structural, Landscape and Mechanical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.

C. Location of electrical system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and his decision shall govern. Necessary changes shall be made at no additional expense to the Architect/Engineer or Owner.

D. The electrical contractor shall determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed. Roughing-in fixtures, etc., must be laid out accurately. Connections to equipment of the same class shall be equal heights, plumb, and at right angles to the wall, unless otherwise directed.

E. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.

F. The electrical contractor shall take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor’s risk.

G. At all times during the performance of this contract, the electrical contractor shall properly protect work from damage and protect the Owner’s property from injury of
loss. The contractor shall make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. The electrical contractor shall adequately protect adjacent property as provided by law and the Bidding Documents. The electrical contractor shall provide and maintain passageways, guard fences, lights and other facilities for protection required by Public Authority or Local conditions.

H. Circuiting and switching shall be exactly as shown on drawings. Combining of home runs is acceptable but neutrals shall not be shared. Contractor shall refer to NEC Article 310-15 and adjust accordingly. Combining of wiring of various systems in conduit runs is not acceptable unless otherwise specified herein or noted on drawings.

I. Neutrals shall not be shared to avoid the requirement of installing handle-ties on breakers.

J. Contractor is responsible for providing UL-listed fire rated materials where required by applicable codes and other sections of this specification to seal fire-rated membrane penetrations. In particular this applies to requirements of IBC Section 712 as it pertains to:
1. Electrical Boxes: Provide minimum 6 inch separation in non-rated walls. Provide minimum 24 inch horizontal separation in fire rated walls. In rated walls locate boxes so as to comply with IBC Section 712 separation and membrane penetration requirements. Apply fire-rated putty pads (SpecSeal Series SSP Intumescent Putty Pads, or equal) to all boxes where 24” box-to-box separation cannot be maintained or where openings exceed allowable limits under IBC section 712.
2. Flush-Mounted Panels (panelboards, fire alarm panels and any other flush-mounted electrical enclosure exceeding 16 square inches of area): Coordinate with the general contractor for gypsum board lined framing pockets where any flush-mounted panelboards are located in 1 or 2-hour rated walls. Provide fire-rated putty pads on top and bottom of panelboards to seal around conduits.
3. Conduit and Cable: Apply fire seal where conduit or cables penetrate fire-rated assemblies as required by NEC Article 300-21 and IBC section 712. Fire seal shall be equal to International Protective Coating Corp. #FSC or #FS series or Chase Technology Corp. #PR-855 Fire Stop.

1.7 INSPECTION

A. All work and material is subject to inspection at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform with these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at no additional expense to the Owner.

1.8 WORKMANSHIP

A. GENERAL
1. Work under this contract shall be performed by workmen skilled in the particular trade conducting all work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.

B. EXCAVATION AND BACKFILL
1. Provide all excavating and backfilling as required, with backfilling only after approval of the Architect. Backfill to be free of all debris and decayable matter. See Excavation and Backfill requirements in DIVISION 1 -- GENERAL REQUIREMENTS.

C. CUTTING, PATCHING AND FRAMING
1. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by this Contractor shall be the responsibility of this Contractor and shall be repaired by skilled craftsmen of the trades involved at no additional expense to the Owner.

D. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, and framing for equipment are provided by others only if so noted on the drawings. Otherwise, they will be provided by this contractor for his work. Whether chases, etc., are provided by this contractor or others, this contractor is responsible for correct size and locations.

1.9 COORDINATION
A. The electrical contractor shall plan his work to proceed with a minimum interference with other trades and it shall be his responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.

1.10 CLEAN UP
A. The electrical contractor shall keep the premises free from accumulation of waste material or rubbish caused by his work or employees.

B. Upon completion of work, remove materials, scraps and debris relative to his work and leave the premises, including tunnels, crawl spaces, and pipe chases in clean and orderly condition. Remove all dirt and debris from the interior and exterior of all devices and equipment. After construction is completed, wash all light fixtures and lamps, remove all labels from fixture lenses.

1.11 DUST PROTECTION
A. Contractor will provide suitable dust protection for all existing areas prior to beginning of cutting or demolition. Contractor will obtain approval of partition from Owner before proceeding with work involved in these rooms.
1.12 TEMPORARY FACILITIES

A. OFFICES
1. The electrical contractor shall provide temporary offices for himself including lights, heat and telephone, if required.

B. REMOVAL
1. The electrical contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinished to match adjacent areas.

C. LADDERS AND SCAFFOLDS
1. The electrical contractor shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the contractor.

D. PROTECTION DEVICES
1. The electrical contractor shall provide and maintain his own necessary barricades, fences, signal lights, etc. required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the contractor. The contractor shall assume all responsibility for which the owner may be held responsible because of lack of above items.

E. TEMPORARY WATER
1. The electrical contractor shall provide all water required by his trade for construction. Temporary drinking water shall be provided from a proven safe source dispensed by single service containers, until such time as the construction water outlet has been install, disinfected and approved for drinking purposes.

F. TEMPORARY FIRE PROTECTION
1. The electrical contractor shall provide all necessary first-aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority. The contractor shall provide general area fire extinguishers only.

1.13 TEMPORARY ELECTRICAL FACILITIES

A. ELECTRICAL POWER
1. The electrical contractor shall provide temporary construction power to the remodel area to support construction activities of all trades. All temporary power shall be derived from a separate temporary construction service arranged and paid for by the contractor. No tie-ins or connections to the Owner’s system shall be made without the Owner’s consent. Construction power shall the following unless otherwise agreed to by the General Contractor:
a. One temporary panel located as directed by the General Contractor with provision for 100A, 3-phase, 4-wire service at voltage available.
b. Power centers for miscellaneous tools and equipment used in the construction period, so that power can be secured at any desired point from temporary service panel within building proper.

c. Lighting for safe and adequate working conditions throughout the buildings, stairways, and crawl spaces. Provide at least 1/2 watt of incandescent lighting per square foot of floor area. Maintain a socket voltage of at least 110 volts. Use a minimum of 100 watt bulbs.

d. Power for construction site offices and for other temporary storage and construction buildings.

e. Power to maintain continuous construction during changeover of electrical equipment.

f. Power for testing and checking equipment.

B. TEMPORARY FIRE ALARM SYSTEM

1. Provide and maintain the following minimum fire alarm devices at all time in construction zones:
 a. A pull station at each exit.
 b. A minimum of one smoke or heat detector.

2. All temporary devices shall be connected to the facility fire alarm system.

C. TEMPORARY EGRESS/EXIT LIGHTING

1. Provide and maintain the following minimum temporary egress/exit devices at all time in construction zones:
 a. Illuminated exit lights at each construction zone exit.
 b. A minimum of two unswitched light fixtures in each construction zone connected to the Owner’s Life Safety emergency power branch.

2. In any temporary public corridors passageways required by construction walls, provide temporary lights fixtures as required. Fixture shall be fluorescent corridor wraps or other fluorescent fixture acceptable to the Owner. Connect at least one fixture to Owner’s Life Safety emergency power branch.

1.14 ALTERATIONS

A. In alteration, extension and remodeling projects, existing conduits shall be extended, altered or reconnected as required. Where existing conduits which are indicated to be revised, or which will be essential to the functioning of the particular system, are cut or exposed due to construction changes, new connections shall be made in the most expeditious manner as directed or indicated by the Owner. Where wiring is involved, new wires shall be pulled in between the nearest available, accessible, reused outlets. In all cases where new wires are required, indicated or specified to be installed in existing conduits, if same cannot be installed, new conduits shall be provided. Attention is called to the fact that all new conduit, wiring and apparatus shown on drawings or specified shall be connected to the existing systems so as to function as complete units. All conduits and electrical apparatus, etc., in place and not shown or specified to be reused or which will not be essential to the functioning of the various systems when the work is complete, shall be removed and stored where directed. No old material shall be reinstalled or reused unless otherwise indicated on drawings or herein specified. Concealed conduits which are not indicated or specified to be reused
and become exposed due to construction changes shall be removed to the nearest available, accessible, reused outlets.

B. Provide temporary power feeds, temporary light switching and any other temporary measures required to support systems that cannot be completed due to the phased nature of the project. For example in the case of a corridor that spans several phases provide temporary switching for completed phases of corridor lighting until all phases can be completed and final switching installed.

1.15 SHOP DRAWINGS

A. Provide eight (8) copies of manufacturer's literature and/or certified prints as soon as possible but within thirty (30) days after awarding of Contract, for items of materials, equipment, or systems where called for in specifications. Shop drawings and literature complete showing item used, size, dimensions, capacity, rough-in, etc., as required for complete check and installation. Manufacturer's literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.

B. Each copy of each item submitted must be clearly marked as follows for purposes of identification and record. Submittals not marked (typewritten only) as described below will be rejected and returned without review.
 Date:
 Name of Project:
 Branch of Work:
 Submitted by:
 Specification or Plan Reference:

C. Prior to their submission, each submittal shall be thoroughly checked by the contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made, if any. Submittals requiring extensive corrections shall be revised before submission. Each submittal not stamped and signed by the contractor evidencing such checking will be rejected and returned without review.

D. All submittals will be examined when submitted in proper form for compliance. Such review shall not relieve the contractor of responsibility for errors, for deviation from the contract Documents, nor for violation of sound safety practices.

E. The contractor shall keep in the field office one print of each submittal which has been reviewed and stamped by the Architect or Engineer.

F. Submittals will be required for each item of material and equipment furnished as noted in specifications.

G. All submittals shall be organized into a single binder and transmitted in one delivery. Transmittal of individual sections is not permitted. Exceptions will be considered upon
request for exceptionally long-lead equipment or voluminous submittals that cannot reasonably fit into a single binder.

H. Submittals which are incomplete relative to quality requirements, capacity, engineering data, dimensional data or detailed list of specialty or control equipment will be rejected. Lists shall include descriptive coding as specified or shown on drawings. The Engineer will perform shop drawing review of each item, however, subsequent review of items previously rejected will be billed to the contractor at a rate of $75 per hour.

I. Schedule of Shop Drawings.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MFG LIT</th>
<th>SHOP DWG</th>
<th>WIRING DIAG.</th>
<th>O&M BOOK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACEWAYS AND FITTINGS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIRE AND CABLE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OUTLET BOXES</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>WIRING DEVICES</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FIRE SEAL PRODUCTS (see specifications 260533)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SUPPORTING DEVICES</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FUSES</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DISCONNECT SWITCHES</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PANELBOARDS</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MOTOR CONTROLS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LIGHTING FIXTURES</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FIRE ALARM SYSTEM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1.16 OPERATION AND MAINTENANCE MANUALS

A. At the time orders are placed for any item of equipment requiring service or operating maintenance, the contractor shall request the manufacturer furnish three (3) copies of OPERATION AND MAINTENANCE INSTRUCTIONS for each piece of equipment. These shall be included in the brochure of equipment.

1.17 BROCHURE OF EQUIPMENT
A. Upon completion of work, prepare a "Brochure of Equipment" containing data pertinent to equipment and systems on job. Binders containing materials shall be one or more three ring binders of sufficient number to hold all literature. Contained in binders shall be: Installation, maintenance, and operating instructions for each piece of equipment; parts lists; wiring diagrams; one copy of each shop drawing and literature submittal; record drawings, etc.

B. All literature shall be clean, unused and filed under divider headings corresponding to the specifications.

C. These brochures shall be submitted to the Architect/Engineer and approved by him before authorization of final payment.

1.18 "AS-BUILT" DRAWINGS

A. The electrical contractor shall furnish to the Owner and Architect/Engineer a red line marked print set of drawings, each sheet stamped as the "As-Built" drawing and bearing the contractor's name, date and signature. The As-Built drawing shall show the location of all concealed or underground conduit runs and other equipment, devices, outlets, etc., installed other than as shown on the drawings. Dimension underground lines from established building lines. As-Built drawings to be developed from a job site record drawing set and shall be clean, neat and all changes legible and shown in the same format and symbols used on the contract drawings. The As-Built drawing set shall be submitted to the architect/engineer for approval, and any deficiencies noted by the architect/engineer corrected and resubmitted until approved by the architect/engineer at no cost to architect/engineer or owner.

1.19 PLACING SYSTEMS IN OPERATION

A. At the completion of the work and at such time as the Owner shall direct, prior to final acceptance, the electrical contractor performing this work shall put into satisfactory operation the various systems installed under the specifications. At no additional cost to the Owner, furnish the services of a person completely familiar with the installations performed under this specification, to instruct the Owners operating personnel in the proper operation and servicing of the equipment and systems. These services shall be available for a period of no less than one (1) day.

B. Upon placing systems in operation the contractor shall measure phase currents at each main and branch panel within the facility, including existing panels, and balance the phase currents to within 20% of each other by moving circuit breakers to different phases.

1.20 GUARANTEE-WARRANTY

A. The electrical contractor shall and hereby does warrant and guarantee that all work executed under this Division will be free from defects of materials and workmanship for a period of one year from the date of final acceptance of this work and that he will, at
his own expense, repair and/or replace all such defective materials and work and all other work damaged thereby which becomes defective during the term of warranty, except that lamps and tubes shall be his responsibility only for normal lamp life or one year, whichever occurs first.

END OF SECTION 26 00 00
SECTION 26 05 19 - ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.
 3. Sleeves and sleeve seals for cables.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.
 B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Copper Conductors: Comply with NEMA WC 70.
 B. Conductor Insulation: Comply with NEMA WC 70 for Types THW, THHN-THWN, XHHW.
 C. Multiconductor Cable: Comply with NEMA WC 70 for armored cable (Type AC), metal-clad cable (Type MC) with ground wire.
 D. Aluminum conductors not permitted.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. AFC Cable Systems, Inc.
3. O-Z/Gedney; EGS Electrical Group LLC.
4. 3M; Electrical Products Division.
5. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SLEEVES FOR CABLES

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

C. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section "Penetration Firestopping."

2.4 SLEEVE SEALS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

C. Basis-of-Design Product: Subject to compliance with requirements, provide a product by one of the following:
 1. Advance Products & Systems, Inc.
 2. Calpico, Inc.
 3. Metraflex Co.
 4. Pipeline Seal and Insulator, Inc.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Size and material per feeder schedule on plans. All conductors copper unless otherwise noted on plans.

B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. All conductors 75°C (167°F) unless otherwise noted on plans.

B. Service Entrance: Type THHN-THWN, single conductors in raceway or type XHHW, single conductors in raceway.

C. Exposed Feeders: Type THHN-THWN, single conductors in raceway.

D. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Type THHN-THWN, single conductors in raceway.

E. Coordinate first paragraph below with Division 26 Section "Underground Ducts and Raceways for Electrical Systems."

F. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

G. Exposed Branch Circuits, Including in Crawlspace: Type THHN-THWN, single conductors in raceway.

H. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway.

I. Connections to Light fixtures and equipment not greater than 6 feet in length: Metal-clad cable, Type MC.

J. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN, single conductors in raceway.

K. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

L. Class 1 Control Circuits: Type THHN-THWN, in raceway.

M. Class 2 Control Circuits: Type THHN-THWN, in raceway or power-limited tray cable, in cable tray.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors, unless otherwise indicated.

B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer’s recommended maximum pulling tensions and sidewall pressure values.

C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

E. Support cables according to Division 26 Sections "Hangers and Supports for Electrical Systems."

F. Identify and color-code conductors and cables according to Division 26 Section "Identification for Electrical Systems."

G. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

H. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
 1. Use oxide inhibitor in each splice and tap conductor for aluminum conductors.

I. Wiring at Outlets: Install conductor at each outlet, with at least EIGHT inches of slack.

J. Install separate neutral conductor for all single phase circuits to avoid the requirement of NEC 210.4 for handle-ties on multi-wire branch circuits. No shared neutrals.

3.4 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Coordinate sleeve selection and application with selection and application of firestopping specified in Division 07 Section “Penetration Firestopping.”

B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.

C. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.

D. Cut sleeves to length for mounting flush with both wall surfaces.

E. Extend sleeves installed in floors 2 inches above finished floor level.

F. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

G. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
H. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division 07 Section "Joint Sealants."

I. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division 07 Section "Penetration Firestopping."

J. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.

K. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

L. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.5 SLEEVE-SEAL INSTALLATION

A. Install to seal underground exterior-wall penetrations.

B. Use type and number of sealing elements recommended by manufacturer for cable material and size. Position cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division 07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:
 1. After installing conductors and cables and before electrical circuitry has been energized, test all service entrance, switchboard, panelboard, motor or equipment feeder conductors larger than #6 AWG for compliance with requirements.
 3. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each splice in cables and
conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner.
a. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each splice 11 months after date of Substantial Completion.
b. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
c. Record of Infrared Scanning: Prepare a certified report that identifies splices checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

C. Test Reports: Prepare a written report to record the following:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION 26 05 19
SECTION 26 05 26 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes methods and materials for grounding systems and equipment.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Field quality-control test reports.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
2.2 CONNECTORS

A. Listed and labeled by a nationally recognized testing laboratory acceptable to authorities having jurisdiction for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 1. Pipe Connectors: Clamp type, sized for pipe.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.3 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad, zinc-coated or stainless steel; 3/4 inch by 10 feet or as otherwise accepted by local authority having jurisdiction.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger, unless otherwise indicated.

B. Underground Grounding Conductors: Install bare copper conductor, sized per plans. Bury at least 24 inches below grade.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 4. Connections to Structural Steel: Welded or bolted connectors.

3.2 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors in all circuits. Provide equipment grounding conductor in all armored or metalclad cable assemblies.
B. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

C. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

D. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No. 1/0 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each Network or I.T. Room, terminal cabinet, wiring closet, and central equipment location.
 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-12-inch grounding bus, bus by EC.
 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

E. Metal Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.3 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
 2. For grounding electrode system, install at least rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

E. Provide a concrete-encased (“UFER”) ground. Use bare conductor no smaller than #4 AWG and encase in bottom of concrete slab or footer no less than 2” from bottom of concrete. Bond to reinforcing bars or encase at least 20’ of bare conductor.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, and at ground test wells.
 a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

B. Report measured ground resistances that exceed the following values:

C. Power and Lighting Equipment or System with Capacity 500 kVA and Less: 10 ohms.
 1. Power and Lighting Equipment or System with Capacity 500 to 1000 kVA: 5 ohms.
 2. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.

D. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify engineer promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26
SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes:
 1. Hangers and supports for electrical equipment and systems.
 2. Construction requirements for concrete bases.

1.2 PERFORMANCE REQUIREMENTS
 A. Provide supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
 B. Provide equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads imposed with a minimum structural safety factor of five times the necessary force.

1.3 SUBMITTALS
 A. Product Data: Submit product data for all proposed materials.

1.4 QUALITY ASSURANCE
 A. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS
 A. Do not use wooden materials for support, anchorage or attachment components unless the facility is framed of wooden materials.
 B. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Allied Tube & Conduit.
 b. Cooper B-Line, Inc.; a division of Cooper Industries.
 c. ERICO International Corporation.
d. GS Metals Corp.
e. Thomas & Betts Corporation.
f. Unistrut; Tyco International, Ltd.
g. Wesanco, Inc.

2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Channel Dimensions: Selected for applicable load criteria.

C. Raceway and Cable Supports: As described in NECA 1 and NECA 101.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; galvanized or painted.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Hilti Inc.
 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-plated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used.
 a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
b. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti Inc.
 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.

4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.

5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.

6. Toggle Bolts: All-steel springhead type.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Division 05 Section "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.

B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as scheduled in NECA 1, where its Table 1 lists maximum spacings less than stated in NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 40 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with single or two-bolt conduit clamps.

D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.
3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lbs.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 1. To Wood: Fasten with lag screws or through bolts. Use washers.
 2. To New Concrete: Bolt to concrete inserts.
 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 4. To Existing Concrete: Expansion anchor fasteners.
 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69 or Spring-tension clamps.
 7. To Light Steel: Sheet metal screws.
 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Division 05 Section "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.
3.4 CONCRETE BASES

A. Coordinate with general contractor for the construction of concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors (if present) will be a minimum of 10 bolt diameters from edge of the base.

B. Anchor equipment to concrete base.
 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Division 09 for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29
SECTION 26 05 33 - RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes raceways, fittings, boxes, floor-boxes, enclosures, and cabinets for electrical wiring.

1.2 SUBMITTALS
A. Product Data: For boxes, surface raceways, wireways and fittings, hinged-cover enclosures, and cabinets.

1.3 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND TUBING
A. Rigid Steel Conduit: ANSI C80.1.
B. IMC: ANSI C80.6.
C. EMT: ANSI C80.3.
D. FMC: Zinc-coated steel.
E. LFMC: Flexible steel conduit with PVC jacket.
 1. Not permitted for use as a low voltage raceway, such as serving tel/data rough-ins.
F. Fittings for Conduit (Including all types and flexible and liquid-tight), EMT, and Cable: NEMA FB 1; listed for type and size raceway with which used, and for application and environment in which installed.
 2. Fittings for EMT: Steel or die-cast, set-screw or compression type.
2.2 NONMETALLIC CONDUIT AND TUBING
 B. RNC: NEMA TC 2, Type EPC-40-PVC unless otherwise indicated.
 C. LFNC: UL 1660.
 D. Fittings for ENT and RNC: NEMA TC 3; match to conduit or tubing type and material.
 E. Fittings for LFNC: UL 514B.

2.3 METAL WIREWAYS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper B-Line, Inc.
 2. Hoffman.
 3. Square D; Schneider Electric.
 B. Description: Sheet metal sized and shaped as indicated, NEMA 250, Type 1, 12, or 3R, unless otherwise indicated.
 C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
 D. Wireway Covers: Hinged type, screw-cover type, or flanged-and-gasketed type as necessary or as indicated on plans.
 E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS
 A. Permitted only in utility spaces (mechanical or electrical rooms, crawl spaces, data closets), or where indicated on plans or with written permission from the Architect.
 B. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish.
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Thomas & Betts Corporation.
 c. Wiremold Company; Electrical Sales Division.
2.5 BOXES, ENCLOSURES, AND CABINETS

A. Sheet Metal Outlet and Device Boxes: NEMA OS 1. Provide 2-1/8" x 4" square boxes with mud ring for wall-mounted boxes and 2-1/8" x 4" octagonal boxes for fixture outlets.

B. Cast-Metal Outlet and Device Boxes: NEMA FB 1, ferrous alloy or aluminum, Type FD, with gasketed cover.

C. Nonmetallic Outlet and Device Boxes: Not permitted.

D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

E. Cast-Metal Access, Pull, and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.

F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel. Provide backplate.
 2. Nonmetallic Enclosures: Not permitted unless noted on plans.

G. Floor Boxes:
 1. Floor boxes shall be of die-cast aluminum construction, suited for concrete floors. Boxes shall be equal to Carlon E976RFB, ganged as indicated on plans. Provide brass cover. Provide E976AK2 activation kit for each gang, or as specified on plans.
 2. In slab-on-grade construction provide (2) dedicated 1" conduit from accessible ceiling space to each floorbox intended for tel/data use. This is in addition to the power conduit required.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 1. Exposed Conduit: EMT or RNC, Type EPC-40-PVC, as identified on plans.
 2. Concealed Conduit, Aboveground: EMT or RNC, Type EPC-40-PVC, as identified on plans.
 3. Underground Conduit: RNC, Type EPC-40 PVC, direct buried.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC or LFNC.
 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R unless noted otherwise on plans.

B. Comply with the following indoor applications, unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
2. Exposed and Subject to Severe Physical Damage: IMC. Includes raceways in the following locations:
 a. Loading docks.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
3. Concealed in Ceilings and Interior Walls and Partitions: EMT.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
5. Damp or Wet Locations: EMT.
6. Raceways for Optical Fiber or Communications Cable: EMT.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4, nonmetallic in damp or wet locations. See plans for specific enclosure or box specifications.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION
A. Comply with NECA 1 for installation requirements applicable to products specified in Part 2 except where requirements on Drawings or in this Article are stricter.
B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
C. Complete raceway installation before starting conductor installation.
D. Support raceways as specified in Division 26 Section "Hangers and Supports for Electrical Systems."
E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications conduits, for which fewer bends are allowed.
G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
H. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
3. Change from ENT to RNC, Type EPC-40-PVC, rigid steel conduit, or IMC before rising above the floor.

I. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors, including conductors smaller than No. 4 AWG.

J. Install pull wires in ALL empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 24 inches of slack at each end of pull wire.

K. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where otherwise required by NFPA 70.

L. Expansion-Joint Fittings for RNC: Install in each run of aboveground conduit that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet.
 1. Install expansion-joint fittings for each of the following locations, and provide type and quantity of fittings that accommodate temperature change listed for location:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F (70 deg C) temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F (86 deg C) temperature change.
 c. Indoor Spaces: Connected with the Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 d. Attics: 135 deg F (75 deg C) temperature change.
 2. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at the time of installation.

M. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit or pre-wired fixture whips for recessed and semi-recessed lighting fixtures, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

N. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall.

O. Support all wall-mounted receptacle boxes with B-Line BB8 (or equal) mounting brackets or BB4 (or equal) box support brackets that secure on both sides to a steel stud. Brackets that secure on a single side, such as B-Line BB4 or BB5 series, may be used for switches but are not acceptable for receptacles. Do not use materials not specifically intended for the purpose such as scrap EMT and tie-wraps.
P. Mark all junction boxes with panel and circuit numbers. Mark boxes of emergency systems as required by NEC 700.9. Use indelible ink.

Q. Do not install boxes back to back in walls. Provide minimum 6 inch separation in non-rated walls. Provide minimum 24 inch horizontal separation in fire rated walls. In rated walls locate boxes so as to comply with IBC Section 712 separation and membrane penetration requirements. Apply fire-rated putty pads (SpecSeal Series SSP Intumescent Putty Pads, or equal) to all boxes where 24" box-to-box separation cannot be maintained or where openings exceed allowable limits under IBC section 712.

R. Wherever receptacles are shown adjacent to tel/data, video or other low voltage locations, install boxes side-by-side using dual mounting brackets such as B-Line BB8 series for a consistent distance separating the boxes of no more than 3” between adjacent faceplates. Provide or coordinate additional framing as required.

S. Coordinate all device locations with architectural elevations and other plans before rough-in. Adjust device locations to accommodate casework elevations or knee-space locations or any other architectural or other trade obstruction. Contact the architect or engineer if any conflicts are present that cannot be resolved without substantially changing the layout of devices. The contractor shall be responsible to relocate any devices that are improperly coordinated.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:
1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Division 31 Section "Earth Moving" for pipe less than 6 inches in nominal diameter.
2. Install backfill as specified in Division 31 Section "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Division 31 Section "Earth Moving."
4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through the floor, unless otherwise indicated. Encase elbows for stub-up ducts throughout the length of the elbow.
5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through the floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 b. For stub-ups at equipment mounted on outdoor concrete bases, extend steel conduit horizontally a minimum of 60 inches from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.
6. Warning Planks: Bury warning planks or tape approximately 12 inches above direct-buried conduits, placing them 24 inches o.c. Align planks along the width and along the centerline of conduit.

3.4 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section “Penetration Firestopping.”

END OF SECTION 26 05 33
SECTION 26 05 48 - VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 INTRODUCTION

A. Seismic Restraint: A fixed device (a seismic brace, an anchor bolt or stud, or a fastening assembly) used to prevent vertical or horizontal movement, or both vertical and horizontal movement, of an electrical system component during an earthquake.

B. Design, provide, and install all required seismic restraints for electrical equipment including conduit, lighting, panelboards, transformers, transfer switches, and generators in accordance with the IBC requirements for seismic bracing and Federal Emergency Management (FEMA) 413 – Installing Seismic Restraints for Electrical Equipment.

1.2 SUMMARY

A. Section includes:
 1. Channel support systems.
 2. Restraint cables.
 3. Hanger rod stiffeners.
 4. Anchorage bushings and washers.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:
 1. Site Class as Defined in the IBC: D.
 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: IV.
 a. Component Importance Factor: 1.5.
 b. Component Response Modification Factor: 1.5.
 c. Component Amplification Factor: 1.0.
 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 61%.
 4. Design Spectral Response Acceleration at 1.0-Second Period: 32%.

1.4 SUBMITTALS

A. Product Data: For the following:
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an agency acceptable to authorities having jurisdiction.
b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic forces required to select vibration isolators and seismic restraints.
 a. Coordinate design calculations with wind-load calculations required for equipment mounted outdoors. Comply with requirements in other Division 26 Sections for equipment mounted outdoors.

2. Indicate materials and dimensions and identify hardware, including attachment and anchorage devices.

3. Field-fabricated supports.

4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events.
 c. Preapproval and Evaluation Documentation: By an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

C. Welding certificates.

D. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage pre-approval OPA number from OSHPD, pre-approval by ICC-ES, or pre-approval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If pre-approved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
D. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 SEISMIC-RESTRAINT DEVICES

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
1. Amber/Booth Company, Inc.
2. California Dynamics Corporation.
3. Cooper B-Line, Inc.; a division of Cooper Industries.
4. Hilti Inc.
5. Loos & Co.; Seismic Earthquake Division.
7. TOLCO Incorporated; a brand of NIBCO INC.
8. Unistrut; Tyco International, Ltd.

B. General Requirements for Restraint Components: Rated strengths, features, and application requirements shall be as defined in reports by an evaluation service member of ICC-ES, OSHPD, or an agency acceptable to authorities having jurisdiction.
1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces.

D. Restraint Cables: ASTM A 603 galvanized-steel cables with end connections made of steel assemblies with thimbles, brackets, swivels, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod. Do not weld stiffeners to rods.

F. Bushings for Floor-Mounted Equipment Anchor: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchors and studs.

G. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices.

H. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.
I. Mechanical Anchor: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchors with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter.

J. Adhesive Anchor: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES, OSHPD, or an agency acceptable to authorities having jurisdiction.

B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.2 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Equipment and Hanger Restraints:
1. Install restrained isolators on electrical equipment.
2. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES, OSHPD, or an agency acceptable to authorities having jurisdiction providing required submittals for component.

B. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

C. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

D. Drilled-in Anchors:
1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid pre-stressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.3 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 2. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 3. Test to 90 percent of rated proof load of device.
 4. Measure isolator restraint clearance.
 5. Measure isolator deflection.
 6. Verify snubber minimum clearances.
 7. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved.

B. Remove and replace malfunctioning units and retest as specified above.

C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust isolators after isolated equipment is at operating weight.
B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

C. Adjust active height of spring isolators.

D. Adjust restraints to permit free movement of equipment within normal mode of operation.

3.6 ELECTRICAL VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE SCHEDULE

A. Generator Sets: Comply with Division 15 Section "Mechanical Vibration Controls and Seismic Restraints."

B. Anchor panelboards, motor-control centers, motor controls, switchboards, switchgear, transformers, fused power-circuit devices, transfer switches, busways, battery racks, static uninterruptible power units, power conditioners, capacitor units, communication system components, and electronic signal processing, control, and distribution units as follows:

1. Size concrete bases so expansion anchors will be a minimum of 10 bolt diameters from the edge of the concrete base.
2. Concrete Bases for Floor-Mounted Equipment: Use female expansion anchors and install studs and nuts after equipment is positioned.
3. Bushings for Floor-Mounted Equipment Anchors: Install to allow for resilient media between anchor bolt or stud and mounting hole in concrete.
4. Anchor Bolt Bushing Assemblies for Wall-Mounted Equipment: Install to allow resilient media where equipment or equipment-mounting channels are attached to wall.
5. Torque bolts and nuts on studs to values recommended by equipment manufacturer.

C. Lighting:

1. Provide a 12 ga wire hanger on opposite (diagonal) corners of each light fixture installed in a lay-in ceiling. Connect wire to structure. This wire is in addition to wiring supporting lay-in ceiling grid and shall be installed by electrical contractor. Recessed cans may have only one wire hanger.
2. Drive two screws through lay-in ceiling runner into each side of light fixture, or provide seismic hold down clips.
3. On pendant mounted fixtures, provide a concealed safety cable connected to the luminaire. The safety cable shall run through the luminaire pendant and be securely attached to structure above the ceiling.

D. Conduit/Raceways

1. Secure all conduits and raceways directly to wall or ceilings using approved straps or strut clamps.
2. Where conduits are suspended, install clevis hangers, j-hangers, or a trapeze support system using threaded rod or other approved materials. Provide rod
stiffeners where required. Provide lateral supports using strut or angle, or cable braces in quantity determined by seismic criteria under section 1.3.

END OF SECTION 26 05 48
SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Identification for conductors and communication and control cable.
 2. Warning labels and signs.
 3. Equipment identification labels.

1.2 SUBMITTALS

A. Product Data: For each electrical identification product indicated.

1.3 QUALITY ASSURANCE

A. Comply with ANSI A13.1.

1.4 COORDINATION

PART 2 - PRODUCTS

2.1 CONDUCTOR AND COMMUNICATION- AND CONTROL-CABLE IDENTIFICATION MATERIALS

A. Marker Tape: Vinyl or vinyl -cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.2 WARNING LABELS AND SIGNS

B. Self-Adhesive Warning Labels: Factory printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment, unless otherwise indicated.
C. Baked-Enamel Warning Signs: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 7 by 10 inches.

D. Metal-Backed, Butyrate Warning Signs: Weather-resistant, non-fading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch (1-mm) galvanized-steel backing; and with colors, legend, and size required for application. 1/4-inch grommets in corners for mounting. Nominal size, 10 by 14 inches.

E. Fasteners for Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

F. Warning label and sign shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES".

2.3 EQUIPMENT IDENTIFICATION LABELS

A. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and ultraviolet-resistant seal for label.

B. Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

PART 3 - EXECUTION

3.1 APPLICATION

A. Auxiliary Electrical Systems Conductor and Cable Identification: Use marker tape to identify field-installed alarm, control, signal, sound, intercommunications, voice, and data wiring connections.
 1. Identify conductors, cables, and terminals in all panels, switchboards, enclosures and at junctions, terminals, and cable pull points. Identify by system and circuit designation.
 2. Use system of designations that is uniform and consistent with system used by manufacturer for factory-installed connections.

B. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29 CFR 1910.145 and apply metal-backed, butyrate warning signs. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
a. Power transfer switches.
b. Controls with external control power connections.

2. Equipment Requiring Workspace Clearance According to NFPA 70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.

C. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.

1. Labeling Instructions:
 a. Indoor Equipment: Adhesive film label with clear protective overlay or self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch high letters on 1-1/2-inch high label; where 2 lines of text are required, use labels 2 inches high.
 b. Outdoor Equipment: Engraved, laminated acrylic or melamine label, drilled for screw attachment.
 c. Elevated Components: Increase sizes of labels and legend to those appropriate for viewing from the floor.
 d. All labels to include equipment tag (e.g. HWP-1), equipment description (e.g. HOT WATER PUMP 1), voltage and phase (e.g. 208V 3-Ø), and panel and circuit number of source (e.g. 1N1L-23/25/27).
 e. All labels shall be black letters on white background. Use red letters on white background for any equipment fed from an emergency (generator or UPS) power source.

2. Equipment to Be Labeled:
 a. Panelboards, electrical cabinets, and enclosures.
 b. Electrical switchgear and switchboards.
 c. Transformers.
 d. Motor-control centers.
 e. Disconnect switches.
 f. Enclosed circuit breakers.
 g. Motor starters.
 h. Push-button stations.
 i. Power transfer equipment.
 j. Contactors.
 k. Lighting control cabinets
 l. Fire Alarm cabinets

3.2 INSTALLATION

A. Verify identity of each item before installing identification products.

B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.

C. Apply identification devices to surfaces that require finish after completing finish work.
D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.

E. Attach non-adhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.

F. Color-Coding for Phase and Voltage Level Identification, 600 V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors in all cases where the insulation of the wire is not color coded.

1. Color shall be factory applied.

2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.

3. Colors for 480/277-V Circuits:
 b. Phase B: Purple.
 c. Phase C: Yellow.

END OF SECTION 26 05 53
SECTION 26 05 72 - OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.2 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Short-circuit study input data, including completed computer program input data sheets.
 2. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.
 b. Revised single-line diagram, reflecting field investigation results and results of short-circuit study.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Short-Circuit Study Specialist.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Short-Circuit Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Short-Circuit Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. CGI CYME.
 2. EDSA Micro Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. Power Analytics, Corporation.
 6. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.

C. Analytical features of fault-current-study computer software program shall have the capability to calculate mandatory features as listed in IEEE 399.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of the computer printout.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
D. Comments and recommendations for system improvements, where needed.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.

G. Short-Circuit Study Output:
 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.
 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.
 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Obtain all data necessary for the conduct of the study.
1. Verify completeness of data supplied on the one-line diagram. Call any discrepancies to the attention of Architect.
2. For equipment provided that is Work of this Project, use characteristics submitted under the provisions of action submittals and information submittals for this Project.

B. Gather and tabulate the following input data to support the short-circuit study:
 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
 5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
 6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
 7. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 8. Motor horsepower and NEMA MG 1 code letter designation.
 9. Cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.

B. Calculate short-circuit currents according to IEEE 551.

C. Base study on the device characteristics supplied by device manufacturer.

D. The extent of the electrical power system to be studied is indicated on Drawings.

E. Begin short-circuit current analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. The calculations shall include the ac fault-current decay from induction motors. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each of the following:
 1. Electric utility's supply termination point.
 2. Incoming switchgear.
 3. Low-voltage switchgear.
 4. Motor-control centers.
 5. Control panels.
 6. Automatic transfer switches.
 8. Disconnect switches.

3.3 ADJUSTING

A. Make minor modifications to equipment as required to accomplish compliance with short-circuit study.

3.4 DEMONSTRATION

A. Train Owner's operating and maintenance personnel in the use of study results.

END OF SECTION 26 05 72
SECTION 26 05 73 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes computer-based, fault-current and overcurrent protective device coordination studies. Protective devices shall be set based on results of the protective device coordination study.
 1. Coordination of series-rated devices is permitted unless otherwise indicated on Drawings.

1.2 SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Product Certificates: For coordination-study and fault-current-study computer software programs, certifying compliance with IEEE 399.

C. Qualification Data: For coordination-study specialist.

D. Other Action Submittals: The following submittals shall be made after the approval process for system protective devices has been completed. Submittals may be in digital form.
 1. Coordination-study input data, including completed computer program input data sheets.
 2. Study and Equipment Evaluation Reports.

1.3 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are not acceptable.

B. Coordination-Study Specialist Qualifications: An entity experienced in the application of computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 1. Professional engineer shall be responsible for the study. All elements of the study shall be performed under the direct supervision and control of engineer.

C. Comply with IEEE 242 for short-circuit currents and coordination time intervals.

D. Comply with IEEE 399 for general study procedures.
PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE PROGRAM REQUIREMENTS

A. Comply with IEEE 399.

B. Analytical features of fault-current-study computer software program shall include "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all over-current protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Gather and tabulate the following input data to support coordination study:
 1. Product Data for overcurrent protective devices specified in other Division 26 Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Impedance of utility service entrance.
 3. Electrical Distribution System Diagram: In hard-copy and electronic-copy formats, showing the following:
 a. Circuit-breaker and fuse-current ratings and types.
 b. Relays and associated power and current transformer ratings and ratios.
 c. Transformer kilovolt amperes, primary and secondary voltages, connection type, impedance, and X/R ratios.
 d. Generator kilovolt amperes, size, voltage, and source impedance.
 e. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length.
 f. Busway ampacity and impedance.
 g. Motor horsepower and code letter designation according to NEMA MG 1.
 4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 d. Generator thermal-damage curve.
 e. Ratings, types, and settings of utility company's overcurrent protective devices.
f. Special overcurrent protective device settings or types stipulated by utility company.
g. Time-current-characteristic curves of devices indicated to be coordinated.
h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
j. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical.

3.2 FAULT-CURRENT STUDY

A. Calculate the maximum available short-circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system. The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
 1. Switchgear and switchboard bus.
 2. Medium-voltage controller.
 3. Motor-control center.
 4. Distribution panelboard.
 5. Branch circuit panelboard.

B. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.

C. Calculate momentary and interrupting duties on the basis of maximum available fault current.

D. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 241 and IEEE 242.
 1. Transformers:
 a. ANSI C57.12.22.
 b. IEEE C57.12.00.
 c. IEEE C57.96.
 4. Low-Voltage Fuses: IEEE C37.46.

E. Study Report:
 1. Show calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.

F. Equipment Evaluation Report:
 1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.

3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

3.3 COORDINATION STUDY

1. Calculate the maximum and minimum 1/2-cycle short-circuit currents.

2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short-circuit currents.

3. Calculate the maximum and minimum ground-fault currents.

B. Comply with IEEE 241 recommendations for fault currents and time intervals.

C. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

D. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

E. Coordination-Study Report: Prepare a written report indicating the following results of coordination study:

1. Tabular Format of Settings Selected for Overcurrent Protective Devices:
 a. Device tag.
 b. Relay-current transformer ratios; and tap, time-dial, and instantaneous-pickup values.
 c. Circuit-breaker sensor rating; and long-time, short-time, and instantaneous settings.
 d. Fuse-current rating and type.
 e. Ground-fault relay-pickup and time-delay settings.

2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate
time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

a. Device tag.
b. Voltage and current ratio for curves.
c. Three-phase and single-phase damage points for each transformer.
d. No damage, melting, and clearing curves for fuses.
e. Cable damage curves.
f. Transformer inrush points.
g. Maximum fault-current cutoff point.

F. Completed data sheets for setting of overcurrent protective devices.

END OF SECTION 26 05 73
SECTION 26 05 74 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.2 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form.
 1. Arc-flash study input data, including completed computer program input data sheets.
 2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Arc-Flash Study Specialist.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.

B. Operation and Maintenance Procedures: In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," provide maintenance procedures for use by Owner’s personnel that comply with requirements in NFPA 70E.
1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society’s Certified Software Development Professional certification.

C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. CGI CYME.
 2. EDSA Micro Corporation.
 3. ESA Inc.
 4. Operation Technology, Inc.
 5. Power Analytics, Corporation.
 6. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate mandatory features as listed in IEEE 399.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENT

A. Executive summary.
B. Study descriptions, purpose, basis and scope.

C. One-line diagram, showing the following:
1. Protective device designations and ampere ratings.
2. Cable size and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output:
1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

F. Incident Energy and Flash Protection Boundary Calculations:
1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Working distance.
6. Incident energy.

G. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.
3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on the device characteristics supplied by device manufacturer.
D. The extent of the electrical power system to be studied is indicated on Drawings.
E. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.
F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions.
G. The calculations shall include the ac fault-current decay from induction motors and shall apply to low-voltage, three-phase ac systems.
H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:
 1. Electric utility’s supply termination point.
 2. Switchgear.
 3. Low-voltage switchgear.
 4. Motor-control centers.
 5. Standby generators and automatic transfer switches.

3.3 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.
B. Use the short-circuit study output and the field-verified settings of the overcurrent devices.
C. Calculate maximum and minimum contributions of fault-current size.
 1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
 2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.
E. Include low-voltage equipment locations, except 240-V ac and 208-V ac systems fed from transformers less than 125 kVA.

F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors shall be decremented as follows:
 1. Fault contribution from induction motors should not be considered beyond three to five cycles.

H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:
 1. When the circuit breaker is in a separate enclosure.
 2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.4 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
 1. Verify completeness of data supplied on the one-line diagram on Drawings. Call discrepancies to the attention of Architect.
 2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.

B. Gather and tabulate the following input data to support coordination study.
 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
 5. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
 6. Motor horsepower and NEMA MG 1 code letter designation.
 7. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
3.5 DEMONSTRATION

A. Engage the Arc-Flash Study Specialist to train Owner's maintenance personnel in the potential arc-flash hazards associated with working on energized equipment and the significance of the arc-flash warning labels.

END OF SECTION 26 05 74
SECTION 26 24 13 - SWITCHBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Service and distribution switchboards rated 600 V and less.
 2. Surge Protective Devices.
 3. Disconnecting and overcurrent protective devices.
 4. Instrumentation.
 5. Control power.
 6. Accessory components and features.
 7. Identification.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: For each switchboard and related equipment:
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 2. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards.
 3. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems.", if this specification is included with this project.

D. Field quality-control reports.

E. Operation and maintenance data.
1.4 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NEMA PB 2.

C. Comply with NFPA 70.

D. Comply with UL 891.

1.5 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Front-Connected, Front-Accessible Switchboards:
 1. Main Devices: Panel mounted.
 3. Sections front and rear aligned.

C. Nominal System Voltage: In accordance with riser diagram in contract documents.

D. Main-Bus Continuous: Per riser diagram in contract documents.

E. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

F. Enclosure: Steel, NEMA 250, Type 1.
 1. Enclosure Finish: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
2. Enclosure: Flat roof; bolt-on rear covers for each section, with provisions for padlocking.

G. Cubical Space Heaters: Factory-installed electric space heaters of sufficient wattage in each vertical section to maintain enclosure temperature above expected dew point.

H. Space-Heater Control: Thermostats to maintain temperature of each section.

J. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

K. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

L. Pull Box on Top of Switchboard:
 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard.
 2. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting.
 3. Bottom shall be insulating, fire-resistant material with separate holes for cable drops into switchboard.
 4. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation.

M. Phase and Neutral Buses and Connections: Three-phase, four-wire unless otherwise indicated. Tin-plated, high-strength, electrical-grade aluminum alloy with tin-plated aluminum circuit-breaker line connections.
 1. Ground Bus: 1/4-by-2-inch minimum size, hard-drawn copper of 98 percent conductivity, equipped with pressure connectors for feeder and branch-circuit ground conductors.
 2. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 3. Neutral Buses: 100-percent of the ampacity of phase buses unless otherwise indicated, equipped with pressure connectors for outgoing circuit neutral cables.

N. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment. Extend buses the length or height of all available spaces to allow for easy addition of future circuit breakers.

2.2 SURGE PROTECTIVE DEVICES

A. Surge Protection Device Description: IEEE C62.41-compliant, integrally mounted, solid-state, parallel-connected, with sine-wave tracking suppression and filtering modules, UL 1449, third edition, Type 1 or Type 2 rated for its location, short-circuit
current rating matching or exceeding the switchboard short-circuit rating. Nominal Discharge Current rating of 20kA, and with the following features and accessories:

1. LED indicator lights for power and protection status.
2. Audible alarm, with silencing switch, to indicate when protection has failed.
3. Form-C, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device.
4. Transient-event counter set to totalize transient surges.

B. Peak Impulse Surge Current Rating: 120 kA per mode/240 kA per phase.

C. Withstand Capabilities: 20000 IEEE C62.41, Category Chigh (20 kV, 10kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

D. Protection modes and UL 1449 VPR for grounded wye circuits with shall be as follows:

1. Line to Neutral: 1200 V for 480Y/277: 800 V for 208Y/120.
2. Line to Ground: 1200 V for 480Y/277: 800 V for 208Y/120.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents. Provide following breakers per the riser diagram:

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I²t response.
4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
5. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical or Compression style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: When indicated on the plans provide circuit breaker with integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

f. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Division 26 Section "Electrical Power Monitoring and Control.", if applicable.

g. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.

h. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

i. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.

j. Key Interlock Kit: When indicated on plans provide externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.

C. Fuses are specified in Division 26 Section "Fuses."

2.4 INSTRUMENTATION

A. Instrument Transformers: IEEE C57.13, NEMA EI 21.1, and the following:
2. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.
3. Current Transformers for Neutral and Ground-Fault Current Sensing: Connect secondary wiring to ground over-current relays, via shorting terminals, to provide selective tripping of main and tie circuit breaker. Coordinate with feeder circuit-breaker, ground-fault protection.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours.
i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from five to 60 minutes.

2. Mounting: Display and control unit flush or semi-flush mounted in instrument compartment door.

2.5 CONTROL POWER

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.

B. Control-Power Fuses: Primary and secondary fuses for current-limiting and overload protection of transformer and fuses for protection of control circuits.

C. Control Wiring: Factory installed, with bundling, lacing, and protection included. Provide flexible conductors for No. 8 AWG and smaller, for conductors across hinges, and for conductors for interconnections between shipping units.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

2.7 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Receive, inspect, handle, store and install switchboards and accessories according to NECA 400.

B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Coordinate required dimensions with general contractor.

1. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.

2. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3. Install anchor bolts to elevations required for proper attachment to switchboards.

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
D. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems", if applicable.

E. Install filler plates in unused spaces of panel-mounted sections.

F. Install over-current protective devices, transient voltage suppression devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

G. Install spare-fuse cabinet.

H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and over-current protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Acceptance Testing Preparation:
 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

C. Testing of Ground Fault Breakers
 1. All circuit breakers with Ground-Fault Protection shall be tested after panelboard is installed and before it is energized. Testing shall be conducted by factory-trained personnel in order to meet the requirements of 2014 NEC 230-95 (C). All testing shall be conducted in the presence of the electrical inspector. Testing
shall include current injection testing, neutral insulation resistance testing, and reduced control voltage testing. Performance test shall be provided to the Authority Having Jurisdiction and retained for the permit file.

D. Switchboard will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 26 24 13
SECTION 26 24 16 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes distribution panelboards and lighting and appliance branch-circuit panelboards.

1.2 PERFORMANCE REQUIREMENTS
 A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified.

1.3 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 4. Short-circuit current rating of panelboards and overcurrent protective devices.
 5. Include evidence of NRTL listing for series rating of installed devices.
 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 7. Include wiring diagrams for power, signal, and control wiring.
 8. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards.
 C. Seismic Qualification Certificates: Submit certification that panelboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."
 D. Operation and maintenance data.

1.4 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Comply with NEMA PB 1.

C. Comply with NFPA 70.

1.5 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

B. Enclosures: Flush- and surface-mounted cabinets as indicated on panel schedules.
 1. Rated for environmental conditions at installed location.
 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box.
 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 a. All circuit directories shall be typed. Handwritten circuit directories are not acceptable.

C. Incoming Mains Location: Determined by Contractor unless otherwise noted on plans.

D. Phase, Neutral, and Ground Buses: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.

E. Conductor Connectors: Suitable for use with conductor material and sizes.
 1. Material: Tin-plated aluminum or Hard-drawn copper, 98 percent conductivity.
 2. Main and Neutral Lugs: Compression or Mechanical type.
 3. Ground Lugs and Bus Configured Terminators: Compression or Mechanical type.
 4. Feed-Through Lugs: Compression or Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 5. Subfeed (Double) Lugs: Compression or Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
F. Service Equipment Label: NRTL labeled for use as service equipment for panelboards with one or more main service disconnecting and overcurrent protective devices.

G. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

H. Panelboard Short-Circuit Current Rating: Rated for series-connected system with integral or remote upstream overcurrent protective devices and labeled by a NRTL.

2.2 DISTRIBUTION & SERVICE ENTRANCE PANELBOARDS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, power and feeder distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike. Provide two keys for every panelboard provided. All keys keyed alike.

D. Mains: Circuit breaker or lugs only as indicated on panel schedules.

G. Fused switches are not permitted in panelboards unless specifically noted on contract documents.

H. All main service panelboards shall be rated for use as a service-entrance.

I. On all main service entrance panelboards, and on other panelboards specified on the plans, provide integral surge protective devices (SPD) with 100 kA surge current rating at 240 VAC or 480 VAC. SPDs shall be located internal to the panel connecting directly to the bus. Device shall be equal to Square-D SurgeLogic.

J. Provide GFI protection for the main service circuit breaker for all 277/480 volt services of 1000 amperes or more in accordance with NEC 230-95.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only as indicated on panel schedules.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units. Plug-in style breakers are not permitted.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike. Provide two keys for every panelboard provided. All keys keyed alike.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with series-connected rating to meet available fault currents. Provide thermal-magnetic breakers unless otherwise indicated on contract documents.
 3. Electronic trip circuit breakers with RMS sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5. Provide only when indicated on panel schedule.
5. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip). Provide only when indicated on panel schedule.
7. Arc-Fault Circuit Interrupter (AFCI) Circuit Breakers: Comply with UL 1699; 120/240-V, single-pole configuration. Provide only when indicated on panel schedule.
8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories, provide where indicated on plans:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Compression or Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Communication Capability: Circuit-breaker-mounted or Integral-mounted communication module with functions and features compatible with power monitoring and control system if specified in Division 26 Section "Electrical Power Monitoring and Control."
 f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 h. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

C. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 1. Fuses, and Spare-Fuse Cabinet: Comply with requirements specified in Division 26 Section "Fuses."

2.5 ACCESSORY COMPONENTS AND FEATURES

A. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Receive, inspect, handle, store and install panelboards and accessories according to NECA 407.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

C. Mount top of trim 72 inches above finished floor unless otherwise indicated.

D. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
E. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.

F. Install filler plates in unused spaces.

G. At all flush-mounted panelboards in finished spaces, stub spare ¾-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.

H. Comply with NECA 1.

3.2 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Division 26 Section "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads and incorporating Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in distribution panelboards with a nameplate complying with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NECA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Testing of Ground Fault Breakers
 1. All circuit breakers with Ground-Fault Protection shall be tested after panelboard is installed and before energized. Testing shall be conducted by factory-trained personnel in order to meet the requirements of 2014 NEC 230-95 (C). All testing
shall be conducted in the presence of the electrical inspector or Authority Having Jurisdiction. All testing shall be in strict accordance with the Electrical Inspector’s requirements. All test documents shall be prepared and sent to the Electrical Inspector for inclusion into the Permit file.

E. Panelboards will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 26 24 16
SECTION 26 27 13 – UNDERGROUND ELECTRIC SERVICE

PART 1 - GENERAL

1.1 SUMMARY

A. Arrange with Local Electrical Utility Company for permanent electric service including all charges or fees levied by the serving utility company relative to this project. All service fees shall be paid by Owner.

B. Underground service entrance, items furnished by serving utility company:
 1. Pad mounted transformer.
 2. Current transformers.
 3. Meter and meter conductors.
 4. Primary cable and installation.

1.2 WORK INCLUDED - SECONDARY

A. Items furnished by contractor (verify all requirements with Utility Company):
 1. Secondary conduit and conductors.
 2. Primary Trenching, Conduit and Conduit installation.
 3. Pad Mounted CT cabinet
 4. Meter base.
 5. 1” Conduit from CT cabinet to the base.
 6. Transformer pad and vault.

1.3 SYSTEM DESCRIPTION

A. System voltage: 208Y/120 volts, three phase, four wire, 60 hertz.

1.4 QUALITY ASSURANCE

A. Install service entrance in accordance with Utility Company's rules and regulations.

PART 2 - EXECUTION

2.1 INSTALLATION

A. Coordinate all work relative to the electrical service with the serving Utility Company prior to construction.

END OF SECTION 26 27 13
SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 WORK INCLUDED
 A. Wall Switches.
 B. Receptacles.
 C. Device Plates and Box Covers.
 D. Dimmers.
 E. Occupancy Sensors

1.2 RELATED WORK
 A. Wire and Cable Section 26 05 19
 B. Outlet Boxes Section 26 05 33
 C. Floor Boxes Section 26 05 33
 D. Lighting Section 26 51 00

1.3 REQUIREMENTS OF REGULATORY AGENCIES
 A. All devices shall be UL listed.

1.4 SHOP DRAWING SUBMITTALS
 A. Submit product data as required.
 B. Provide product data showing configurations, finishes, dimensions, and manufacturers instructions.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS
 A. Cooper Wiring Devices; a division of Cooper Industries, Inc. (Cooper).
B. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).

D. Pass & Seymour/Legrand; Wiring Devices & Accessories (Pass & Seymour).

E. General Electric

F. Lithonia

2.2 COLORS

A. All devices and cover plate colors shall SELECTED BY ARCHITECT except as noted under DEVICE PLATES AND BOX COVERS.

2.3 WALL SWITCHES

A. In all finished spaces:
 1. Specification Grade AC Toggle Switch, 20 ampere, 120-277 volt, clamp type, screw terminal, side or back wired:
 a. Single Pole, 20 ampere Hubbell CSB Series
 b. Double Pole, 20 ampere Hubbell CSB Series
 c. Three-way, 20 ampere Hubbell CSB Series
 d. Four-way, 20 ampere Hubbell CSB Series

B. In mechanical/electrical equipment rooms, maintenance areas, janitor rooms, crawl spaces and other high abuse areas ONLY:
 1. Specification Grade AC Toggle Switch, 20 ampere, 120-277 volt, clamp type, screw terminal, side or back wired:
 a. Single Pole, 20 ampere Hubbell CSB Series
 b. Double Pole, 20 ampere Hubbell CSB Series
 c. Three-way, 20 ampere Hubbell CSB Series
 d. Four-way, 20 ampere Hubbell CSB Series

C. Where shown on plans:
 1. Pilot Light Switch, 20 ampere, light on with load on:
 a. SPST, 20 ampere, 120V, w/ pilot light Hubbell HBL1221 PL
 2. Fused Switches:
 a. Box cover units with switch and plug fuse holder Bussman SSU, SSW, SSY
 Provide fuse sized for load
 3. Keyed Switches:
 a. Lock-Type, chrome lock dome Leviton 1221-2KL
 Provide FOUR keys to Owner
2.4 DIMMERS

A. Fluorescent: Leviton Mural L/S (Level Set) Decora Style 450-watt Preset Digital Dimmer for use with Advance Mark X dimming ballasts. Provide Leviton PE200-10W power extender if noted on plans. Install all power extenders in concealed location.

B. Electronic Low Voltage: Leviton Mural L/S (Level Set) Decora Style 260-watt Preset Digital Dimmer for use with electronic low voltage power supplies. **CONFIRM COMPATIBILITY WITH LOW VOLTAGE LIGHTING SUPPLIER AND PROVIDE ALTERNATE DIMMER IF NECESSARY (SUBJECT TO APPROVAL OF ENGINEER).**

C. All dimmers shall be of same manufacturer and style and shall be identical in appearance and function regardless of load type being dimmed.

2.5 RECEPTACLES

A. In all finished spaces:
 1. Extra Heavy Duty Specification Grade, 20 ampere, 120 volt, clamp type, screw terminal, side or back wired.
 a. Duplex, 20 ampere, 125V (NEMA 5-20R) Leviton BR20 Series
 b. Duplex, ground fault interrupter, 20 ampere, (NEMA 5-20R) Leviton 7899 Series
 c. Isolated Ground Receptacle, 20 ampere, (NEMA 5-20R) Leviton 5362IG Series
 d. Duplex, Tamper Resistant, 20 ampere, (NEMA 5-20R) Leviton TBR20
 e. Duplex, ground fault interrupter, tamper resistant, (NEMA 5-20R) Leviton T7899

B. In mechanical/electrical equipment rooms, maintenance areas, janitor rooms, crawl spaces and other high abuse areas ONLY:
 1. Duplex Receptacles, Specification Grade, Compact, Flush, Nylon Face, clamp type, screw terminal, side or back wired:
 a. Duplex, 20 ampere, 125V (NEMA 5-20R) Hubbell HBL 5352 Series

C. All outdoor receptacles shall be rated and labeled "WEATHER RESISTANT"

REFER TO THE DRAWINGS FOR OTHER OUTLETS REQUIRED FOR THIS PROJECT.

2.6 DEVICE PLATES AND BOX COVERS

A. In all rooms with finished, painted gypboard walls:
 1. Smooth High Impact Nylon Hubbell P Series
 Smooth High Impact Nylon, Style Line Hubbell HPS Series
 Recept Plate, weatherproof “while in-use” Hubbell No. WP Series
B. Note special plates specified herein or on the drawing. Substitute materials must have sample submitted for approval.

C. Device plates for thirty ampere and larger outlets shall be No. 302 /No. 430 stainless steel and suitable for the wiring device used.

D. All plates in mechanical/electrical equipment rooms, maintenance areas, Gymnasiums, kitchens, janitor rooms, crawl spaces and other high abuse areas shall be as follows:
 1. Where devices are surface-mounted and conduit is exposed use ½” deep galvanized box covers, Steel City RS Series, or equal.
 2. Where devices are flush use stainless steel plates, Hubbell, or equal.

2.7 OCCUPANCY SENSORS

A. Ceiling Mounted
 1. Combination ultrasonic and passive infrared motion detector, ceiling-mounted, self-adjusting, available with coverage of 500, 1000 and 2000 sq-ft. Select appropriate coverage for room served. Provide power packs as required. Leviton ODC Series or as specified on plans.

B. Wall-Mounted
 1. Infrared occupancy sensor, self-adjusting, 180 degree field of view, 2100 square feet of coverage. Select appropriate wattage rating for load served. Leviton Decora ODS Series, or as specified on plans.
 2. Where indicated on plans provide Leviton Decora ODS0D-ID, or equal, with automatic switching for two separate lighting loads.

C. Installation
 1. Set all occupancy sensors to maximum delay (typically 30 minutes).

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Furnish and install wiring devices as shown on the contract drawings and as specified herein.

B. Install wiring devices plumb with walls so that device plates are tight to finish surfaces.

C. Device plates in finished areas and on painted walls shall be smooth high-impact nylon.

D. Device plates in mechanical and electrical rooms, mounted on exposed boxes shall be galvanized steel.

E. Dimmers shall not be ganged, unless otherwise noted on the plans. Install with a minimum of 6 inches between dimmers. Do not remove cooling fins.
F. Run equipment grounding wire from isolated receptacle ground terminal to main service panel ground. Isolate this conductor from all other interim grounding points.

G. Wiring devices shall be minimum 20 ampere in all areas, unless noted otherwise herein or on the contract drawings.

H. GFCI receptacles shall not be utilized for feed thru function to protect downstream devices. Each GFCI device as shown on plan shall dedicated to server location where shown only.

3.2 DEVICE HEIGHTS AND LOCATIONS

A. Mount wiring devices at heights above finished floor as noted below or as shown on the contract drawings:
 1. Convenience Receptacles
 2. Switches/Dimmers
 3. Telephone/Data/TV
 4. Telephone (wall-mounted)
 5. Fire Alarm Notification Appliances
 Top of appliance 6" below ceiling or 80" above floor, whichever is lower
 6. Fire Alarm Pull Stations
 7. Thermostats
 8. Clocks as noted on drawings

B. Coordinate all device locations with architectural elevations and other plans before rough-in. Adjust device locations to accommodate casework elevations or knee-space locations or any other architectural or other trade obstruction. Contact the architect or engineer if any conflicts are present that cannot be resolved without substantially changing the layout of devices. The contractor shall be responsible to relocate any devices that are improperly coordinated.

C. Wherever receptacles are shown adjacent to tel/data, video or other low voltage locations, even if on separate plans, install boxes side-by-side with a consistent distance separating the boxes of no more than 3" between adjacent faceplates. Provide or coordinate additional framing as required.

END OF SECTION 26 27 26
SECTION 26 28 13 - FUSES

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes: Fuses rated 600-V ac and less for use in control circuits, enclosed
 switches, panelboards, switchboards, enclosed controllers, and motor-control centers.

1.2 SUBMITTALS
 A. Product Data: For each type of product indicated.
 B. Operation and maintenance data.

1.3 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in
 NFPA 70, by a qualified testing agency, and marked for intended location and
 application.
 B. Comply with NEMA FU 1 for cartridge fuses.
 C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of
 the following:
 1. Cooper Bussmann, Inc.
 2. Edison Fuse, Inc.
 3. Ferraz Shawmut, Inc.
 4. Littelfuse, Inc.

2.2 FUSES
 A. Characteristics: NEMA FU 1, nonrenewable fuses with voltage ratings consistent with
 circuit voltages.
PART 3 - EXECUTION

3.1 FUSE APPLICATIONS

A. Service Entrance: Class RK1, time delay; or Class J, time delay.

B. Feeders: Class RK1, time delay; Class RK5, time delay; or Class J, time delay.

C. Motor Branch Circuits: Class RK5, time delay.

D. Other Branch Circuits: Class RK1, time delay; Class RK5, time delay; or Class J, fast acting.

E. Control Circuits: Class CC, fast acting.

3.2 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

B. Provide a spare fuse cabinet equal to Bussman SFC-FUSE-CAB (30” x 24” x 12”). Mount near main distribution panel or where majority of fused devices are located. Provide three spare fuses of each fuse type and size used in project.

3.3 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division 26 Section “Identification for Electrical Systems” and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block and holder.

END OF SECTION 26 28 13
SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Fusible switches.
 2. Non-fusible switches.
 3. Shunt trip switches.
 4. Stand-alone molded-case circuit breakers (MCCBs).
 5. Enclosures.

1.2 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.4 SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.
B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 1. Wiring Diagrams: For power, signal, and control wiring.
C. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
D. Field quality-control reports.
E. Operation and maintenance data.
1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.
 5. Hubbell

B. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac (as required to accommodate actual voltage), 1200 A and smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 4. Lugs: Suitable for number, size, and conductor material.
 5. Service-Rated Switches: Labeled for use as service equipment.

2.2 NON-FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 4. Square D; a brand of Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 240 or 600-V ac to accommodate specified voltage, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable
handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Lugs: Suitable for number, size, and conductor material.

2.3 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cooper Bussmann, Inc.
 2. Ferraz Shawmut, Inc.
 3. Littelfuse, Inc.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with 200-kA interrupting and short-circuit current rating when fitted with Class J fuses.

C. Switches: Three-pole, horsepower rated, with integral shunt-trip mechanism and Class J fuse block; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, connected pilot, and indicating and control devices.

E. Accessories:
 1. Oiltight key switch for key-to-test function.
 2. Oilight ON pilot light.
 3. Isolated neutral lug.
 4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
 5. Form C alarm contacts that change state when switch is tripped.
 6. Three-pole, double-throw, fire-safety and alarm relay; confirm coil voltage with fire alarm contractor.
 7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
 8. Provide auxiliary switch on or interlocked with lockable handle. Switch to change state if handle is switched.

2.4 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
4. Square D; a brand of Schneider Electric.

B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.

D. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I^2t response.

E. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

F. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Following items if specified on plans:
 a. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 b. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
 c. Auxiliary Contacts: One SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
 d. Alarm Switch: One N.O. contact that operates only when circuit breaker has tripped.

2.5 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 2. Outdoor Locations: NEMA 250, Type 3R.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

B. Comply with mounting and anchoring requirements specified in Division 26 Section "Vibration and Seismic Controls for Electrical Systems."

C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

D. Install fuses in fusible devices.

E. Comply with NECA 1.

3.2 IDENTIFICATION

A. Comply with requirements in Division 26 Section "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies enclosed switches and circuit breakers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

END OF SECTION 26 28 16
SECTION 26 51 00 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Interior lighting fixtures, lamps, and ballasts.
 2. Emergency lighting units.
 3. Exit signs.
 4. Lighting fixture supports.

1.2 SUBMITTALS

A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes.

B. Shop Drawings: Show details of nonstandard or custom lighting fixtures. Indicate dimensions, weights, methods of field assembly, components, features, and accessories.

C. Product Certificates: For each type of ballast for bi-level and dimmer-controlled fixtures, signed by product manufacturer.

D. Field quality-control test reports.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include manufacturers specified on Light Fixture Schedule.
2.2 LIGHTING FIXTURES AND COMPONENTS, GENERAL REQUIREMENTS

A. Recessed Fixtures: Comply with NEMA LE 4 for ceiling compatibility for recessed fixtures.

B. Incandescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.

C. Fluorescent Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.

D. HID Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5B.

E. Metal Parts: Free of burrs and sharp corners and edges.

F. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.

G. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

H. Plastic Diffusers, Covers, and Globes:
 1. Acrylic Lighting Diffusers: 100 percent virgin acrylic plastic. High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 a. For K12 pattern acrylic lenses, thickness of 0.125 inch (3.175 mm) is most common for specification grade fixtures. Thicknesses of 0.100 and 0.125 inch (2.54 and 3.175 mm) are commonly available.
 b. Lens Thickness: At least 0.125 inch minimum unless different thickness is specified.
 c. UV stabilized.
 2. Glass: Annealed crystal glass, unless otherwise indicated.

2.3 LED DRIVERS AND MODULES

A. Long-life LED’s, coupled with high-efficiency drivers, rated to deliver L80 performance for 50,000 hours.

B. Minimum color rendering of 80 CRI.

C. Minimum efficacy of 90 lumens/watt.

2.4 BALLASTS

A. Electronic Ballasts for Linear Fluorescent Lamps: Comply with ANSI C82.11; instant or programmed-start type, unless otherwise indicated, and designed for type and quantity
of lamps served. Ballasts shall be designed for full light output unless dimmer or bi-
level control is indicated.
1. Sound Rating: A.
2. Total Harmonic Distortion Rating: Less than 10 percent.
3. Transient Voltage Protection: IEEE C62.41, Category A or better.
4. BF: 0.95 or higher.
5. Power Factor: 0.95 or higher.

B. Electromagnetic Ballasts: Not acceptable.

C. Ballasts for Temperatures 0 Deg F and Higher for Linear Fluorescent Lamps: Electromagnetic type designed for use with indicated lamp types.

D. Ballasts for Dimmer-Controlled Lighting Fixtures with Linear Fluorescent Lamps: Electronic type, as specified on Light Fixture Schedule.
1. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.

E. Ballasts for bi-Level or step-dimmed controlled lighting fixtures with linear fluorescent Lamps: Electronic type.
1. Operating Modes: Ballast circuit and leads provide for remote control of the light output of the associated lamp between high- and low-level and off.
 a. High-Level Operation: 100 percent of rated lamp lumens.
 b. Low-Level Operation: 50 percent of rated lamp lumens.
2. Ballast shall provide equal current to each lamp in each operating mode.
3. Compatibility: Certified by manufacturer for use with specific bi-level control system and lamp type indicated.

F. Ballasts for Compact Fluorescent Lamps: Electronic programmed rapid-start type, complying with ANSI C82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated:
1. Lamp end-of-life detection and shutdown circuit.
2. Automatic lamp starting after lamp replacement.
3. Sound Rating: A.
4. Total Harmonic Distortion Rating: Less than 20 percent.
5. Transient Voltage Protection: IEEE C62.41, Category A or better.
6. Operating Frequency: 20 kHz or higher.
7. Lamp Current Crest Factor: 1.7 or less.
8. BF: 0.95 or higher, unless otherwise indicated.
9. Power Factor: 0.95 or higher.
10. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.

G. Ballasts for Dimmer-Controlled Lighting Fixtures with Compact Fluorescent Lamps: Electronic type, as specified on Light Fixture Schedule.
1. Compatibility: Certified by manufacturer for use with specific dimming control system and lamp type indicated.
H. Internal-Type Emergency Fluorescent Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within lighting fixture body and compatible with ballast. Comply with UL 924. Remote-style only if specified on Light Fixture Schedule.
 1. Emergency Connection: Operate 1 fluorescent lamp(s) continuously at an output of 1100 lumens each. Connect unswitched circuit to battery-inverter unit and switched circuit to fixture ballast.
 2. Night-Light Connection: Operate one fluorescent lamp continuously.
 3. Test Push Button and Indicator Light: Visible and accessible without opening fixture or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 5. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.

I. Electromagnetic Ballast for Metal-Halide Lamps: Comply with ANSI C82.4 and UL 1029. Include the following features, unless otherwise indicated:
 1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
 3. Normal Ambient Operating Temperature: 104 deg F.
 4. Open-circuit operation that will not reduce average life.
 5. Low-Noise Ballasts: Manufacturers’ standard epoxy-encapsulated models designed to minimize audible fixture noise.

J. Electronic Ballast for Metal-Halide Lamps: Include the following features unless otherwise indicated:
 1. Lamp end-of-life detection and shutdown circuit.
 2. Sound Rating: A.
 3. Total Harmonic Distortion Rating: Less than 15 percent.
 4. Transient Voltage Protection: IEEE C62.41, Category A or better.
 5. Lamp Current Crest Factor: 1.5 or less.
 6. Power Factor: .90 or higher.
 7. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C, for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
 8. Protection: Class P thermal cutout.

2.5 EXIT SIGNS
 1. Internally Lighted Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

2.6 EMERGENCY LIGHTING UNITS

A. Description: Self-contained units complying with UL 924.
 1. Battery: Sealed, maintenance-free, lead-acid type.
2. Charger: Fully automatic, solid-state type with sealed transfer relay.
3. Operation: Relay automatically turns lamp on when power supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
4. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
5. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

2.7 LAMPS, DRIVERS, LED

A. Provide lamps or LED’s modules as specified on Light Fixture Schedule

B. Furnish spare fluorescent and metal-halide lamps identical to those installed in each fixture. Quantity: 20% of total lamps used or a minimum of three (3) lamps of each type, whichever is greater.

C. Furnish spare fluorescent and metal-halide ballasts identical to those used in each fixture. Quantity: 1 ballast or 6% of each fixture type, whichever is greater.

D. Furnish spare LED drivers and modules identical to those used in each fixture type. Quantity: 1 driver and 1 module or 3% of each fixture type, whichever is greater.

2.8 LIGHTING FIXTURE SUPPORT COMPONENTS

A. Comply with Division 26 Section “Hangers and Supports for Electrical Systems” for channel- and angle-iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing or equal or better by manufacturer with swivel ball fittings and ceiling canopy. Finish same as fixture.

C. Twin-Stem Hangers: Two, 1/2-inch steel tubes or equal or better by manufacturer with single canopy designed to mount a single fixture. Finish same as fixture.

D. Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gauge or equal or better by manufacturer.

E. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

F. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Lighting fixtures: Set level, plumb, and square with ceilings and walls. Install lamps in each fixture.

B. Comply with NFPA 70 for minimum fixture supports.

C. Suspended Lighting Fixture Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of fixture chassis, including one at each end.

D. Adjust aimable lighting fixtures to satisfaction of owner.

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

F. Organize and execute a 100-hour, uninterrupted burn-in period for all fluorescent luminaries. Luminaires shall be installed in final location prior to burn-in.

G. Re-lamp all luminaries used for construction purposes at completion of project for final acceptance.

H. Align luminaries and clean lenses and diffusers at completion of Project. Clean paint splatters, dirt and debris from installed luminaries. Replace any dented, scratched, soiled or cracked lens or other fixture parts.

3.2 FIELD QUALITY CONTROL

A. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery and retransfer to normal.

B. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.
SECTION 26 56 00 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes the following:
 1. Exterior luminaires with lamps and ballasts.
 2. Luminaire-mounted photoelectric relays.
 3. Poles and accessories.

B. See Division 26 Section "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.2 SUBMITTALS

A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, and finishes.

B. Shop Drawings: Include anchor-bolt templates keyed to specific poles and certified by manufacturer.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

C. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: As indicated on Light Fixture Schedule or as approved through prior approval process.

2.2 LUMINAIRES, GENERAL REQUIREMENTS

A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
B. Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.

C. Metal Parts: Free of burrs and sharp corners and edges.

D. Sheet Metal Components: Corrosion-resistant aluminum, unless otherwise indicated. Form and support to prevent warping and sagging.

E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.

F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.

G. Exposed Hardware Material: Stainless steel.

H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.

I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field.

J. Reflecting surfaces shall have minimum reflectance as follows, unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

N. Factory-Applied Finish for Aluminum Luminaires: Color shall be as specified on Light Fixture Schedule or selected by Architect, if so specified. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. Comply with UL 773 or UL 773A.

B. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.
 1. Relay with locking-type receptacle shall comply with NEMA C136.10.
 2. Adjustable window slide for adjusting on-off set points.

2.4 LED DRIVERS AND MODULES

A. Long-life LED’s, coupled with high-efficiency drivers, rated to deliver L80 performance for 50,000 hours.

B. Minimum color rendering of 80 CRI.

C. Minimum efficiency of 80 lumens/watt.

2.5 FLUORESCENT BALLASTS AND LAMPS

A. Low-Temperature Ballast Capability: Rated by its manufacturer for reliable starting and operation of indicated lamp(s) at temperatures 0 deg F and higher.

B. Ballast Characteristics:
 1. Power Factor: 90 percent, minimum.
 2. Sound Rating: A.
 3. Total Harmonic Distortion Rating: Less than 10 percent.
 6. Transient-Voltage Protection: Comply with IEEE C62.41 Category A or better.

C. Low-Temperature Lamp Capability: Rated for reliable starting and operation with ballast provided at temperatures 0 deg. F. and higher.

D. Fluorescent Lamps: Low-mercury type. Comply with the EPA’s toxicity characteristic leaching procedure test; shall yield less than 0.2 mg of mercury per liter when tested according to NEMA LL 1.

2.6 BALLASTS FOR HID LAMPS

A. Comply with ANSI C82.4 and UL 1029 and capable of open-circuit operation without reduction average life. Include the following features, unless otherwise indicated:
1. Ballast Circuit: Constant-wattage autotransformer or regulating high-power-factor type.
2. Minimum Starting Temperature: Minus 22 deg F.
3. Normal Ambient Operating Temperature: 104 deg F.
4. Ballast Fuses: One in each ungrounded power supply conductor. Voltage and current ratings as recommended by ballast manufacturer.

2.7 LAMPS, DRIVERS

A. Metal-Halide Lamps: ANSI C78.1372, with a minimum CRI and color temperature equal or greater than lamp specified on Light Fixture Schedule.

B. Provide lamps or LED’s modules as specified on Light Fixture Schedule

C. Furnish spare fluorescent and metal-halide lamps identical to those installed in each fixture. Quantity: 20% of total lamps used or a minimum of three (3) lamps of each type, whichever is greater.

D. Furnish spare fluorescent and metal-halide ballasts identical to those used in each fixture. Quantity: 1 ballast or 6% of each fixture type, whichever is greater.

E. Furnish spare LED drivers and modules identical to those used in each fixture type. Quantity: 1 driver and 1 module or 3% of each fixture type, whichever is greater.

2.8 POLES AND SUPPORT COMPONENTS, GENERAL REQUIREMENTS

A. Structural Characteristics: Comply with AASHTO LTS-4.
 1. Wind-Load Strength of Poles: Adequate at indicated heights above grade without failure, permanent deflection, or whipping in steady winds of speed indicated in Part 1 "Structural Analysis Criteria for Pole Selection" Article, with a gust factor of 1.3.
 2. Strength Analysis: For each pole, multiply the actual equivalent projected area of luminaires and brackets by a factor of 1.1 to obtain the equivalent projected area to be used in pole selection strength analysis.

B. Luminaire Attachment Provisions: Comply with luminaire manufacturers’ mounting requirements. Use stainless-steel fasteners and mounting bolts, unless otherwise indicated.

C. Mountings, Fasteners, and Appurtenances: Corrosion-resistant items compatible with support components.
 1. Materials: Shall not cause galvanic action at contact points.
 2. Anchor Bolts, Leveling Nuts, Bolt Caps, and Washers: Hot-dip galvanized after fabrication, unless stainless-steel items are indicated.
 3. Anchor-Bolt Template: Plywood or steel.
D. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Concrete, reinforcement, and formwork are specified in Division 03 Section "Cast-in-Place Concrete."

E. Power-Installed Screw Foundations: Factory fabricated by pole manufacturer, with structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123M; and with top-plate and mounting bolts to match pole base flange and strength required to support pole, luminaire, and accessories.

F. Breakaway Supports: Frangible breakaway supports, tested by an independent testing agency acceptable to authorities having jurisdiction, according to AASHTO LTS-4.

2.9 STEEL POLES

A. Poles: Comply with ASTM A 500, Grade B, carbon steel with a minimum yield of 46,000 psig (317 MPa); 1-piece construction up to 40 feet (12 m) in height with access handhole in pole wall.
 1. Shape: As specified on Light Fixture Schedule.
 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.

B. Brackets for Luminaires: Detachable, cantilever, without underbrace.
 1. Adapter fitting welded to pole and bracket, then bolted together with plated or galvanized-steel bolts.
 2. Cross Section: Tapered oval, with straight tubular end section to accommodate luminaire.
 3. Match pole material and finish.

C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.

D. Steps: Fixed steel, with nonslip treads, positioned for 15-inch (381-mm) vertical spacing, alternating on opposite sides of pole; first step at elevation 10 feet (3 m) above finished grade.

E. Grounding and Bonding Lugs: Welded 1/2-inch (13-mm) threaded lug, complying with requirements in Division 26 Section "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

F. Cable Support Grip: Wire-mesh type with rotating attachment eye, sized for diameter of cable and rated for a minimum load equal to weight of supported cable times a 5.0 safety factor.

G. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.

H. Galvanized Finish: After fabrication, hot-dip galvanize complying with ASTM A 123/A 123M.
I. Factory-Painted Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes. Color shall be as specified on Light Fixture Schedule or selected by Architect, if so specified selected by Architect.

2.10 POLE ACCESSORIES (if specified on Light Fixture Schedule)

A. Duplex Receptacle: 120 V, 20 A in a weatherproof assembly complying with Division 26 Section "Wiring Devices" for ground-fault circuit-interrupter type.
 1. Recessed, 12 inches above pole base.
 2. Nonmetallic polycarbonate plastic or reinforced fiberglass cover, color to match pole, that when mounted results in NEMA 250, Type 3R enclosure.
 3. With cord opening.
 4. With lockable hasp and latch that complies with OSHA lockout and tag-out requirements.

B. Minimum 1800-W transformer, protected by replaceable fuses, mounted behind access cover.

C. Base Covers: Manufacturers' standard metal units, arranged to cover pole's mounting bolts and nuts. Finish same as pole.

PART 3 - EXECUTION

3.1 LUMINAIRE INSTALLATION

A. Install lamps in each luminaire.

B. Fasten luminaire to indicated structural supports.
 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Adjust luminaires that require field adjustment or aiming to satisfaction of Owner.

3.2 POLE INSTALLATION

A. Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on the pole.

B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features, unless otherwise indicated on Drawings:
 1. Fire Hydrants: 8'.
 2. Water, Gas, Electric, Communication, Storm Drainage and Sewer Lines: 6'.
 3. Trees: 15'.
C. Concrete Pole Foundations: Set anchor bolts according to anchor-bolt templates furnished by pole manufacturer. Concrete materials, installation, and finishing requirements are specified in Division 03 Section "Cast-in-Place Concrete."

D. Foundation-Mounted Poles: Mount pole with leveling nuts, and tighten top nuts to torque level recommended by pole manufacturer.
 1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
 2. Grout void between pole base and foundation. Use non-shrink or expanding concrete grout firmly packed to fill space.
 3. Install base covers, unless otherwise indicated.
 4. Use a short piece of 1/2-inch diameter PVC pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

E. Raise and set poles using web fabric slings (not chain or cable).

F. All poles shall be checked after one (1) year of operation for proper vertical alignment and shall be adjusted to true plumb if necessary.

3.3 INSTALLATION OF INDIVIDUAL GROUND-MOUNTING LUMINAIRES

A. Install on concrete base with top 4 inches above finished grade or surface at luminaire location, unless otherwise specified on plans. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Division 03 Section "Cast-in-Place Concrete."

3.4 GROUNDING

A. Ground metal poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole.
 2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

B. Ground nonmetallic poles and support structures according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 1. Install grounding electrode for each pole.
 2. Install grounding conductor and conductor protector.
 3. Ground metallic components of pole accessories and foundations.

END OF SECTION 26 56 00
PART 1 - GENERAL

1.1 SCOPE

A. The electrical contractor, through subcontract with an authorized Fire Alarm Contractor, shall furnish and install, complete and ready for operation, an intelligent, addressable, digital Voice Evacuation/Fire Alarm System, including panel, detectors, pull stations, door holders, local alarms, wiring, remote booster power supplies, signal appliances, and any and all other equipment necessary for a complete operational system, as shown on the drawings and indicated herein.

B. The Fire Alarm Contractor shall be licensed by the State in which the project is located. All fire alarm equipment shall be installed exclusively by installers and workmen that are employees of the fire alarm system contractor. All installers and workmen shall be National Institute for Certification in Engineering Technologies (NICET) certified for fire alarm systems at level two or greater. All submittal preparers shall be resident NICET level four in fire alarm and shall be state licensed. Contractors and workmen not complying with this specification shall not be allowed to perform this work.

C. The Fire Alarm Contractor shall prepare plans and calculations required by the authority having jurisdiction (AHJ), shall submit all required documents to the AHJ for approval, and shall obtain all necessary permits or approvals from the AHJ including anything required prior to installation and/or after completion and testing.

D. The Fire Alarm Supplier shall bid directly to the Electrical Contractors and include all work to perform, design and install a complete Fire Alarm System for the West Yellowstone School and all associated existing buildings around the School. This Project consist of new and existing construction. Work covered by this section includes the furnishing of labor, equipment, and materials for installation of the fire alarm system as indicated in this specification. The Fire Alarm Supplier is responsible for all Site Investigation, Design as this is a performance specification.

E. All existing Fire Alarm systems devices and wire shall be completely removed. All existing Fire Alarm system devices shall be replaced with new, including but not limited to, Notification Devices, Smoke Detector, Heat Detectors, CO2 Detectors, Duct Smoke detectors, Fire Suppression Devices, HVAC shutdown, Smoke rating devices, Kitchen Fire Alarm devices, etc. A complete Fire alarm upgrade shall be completed within the whole facility, no change orders will be accepted. The contractor MUST do an initial site inspection prior to bid. Re-use of conduit is acceptable, no wiring shall be re-used. See plans for additional information.

F. The electrical contractor shall provide for all rough-in (including supply and installation of electrical boxes and raceways) and wire pulling. The fire alarm contractor shall
supply wiring and any specialty back-boxes required for the fire alarm contractors equipment. The electrical contractor shall NOT install any fire alarm system components beyond rough-in and wire pulling. The fire alarm contractor shall coordinate all requirements with the electrical contractor prior to bidding.

G. All portions of the systems shall be installed in accordance with the drawings, details, and specifications or as required by jurisdictional authorities and codes. Jurisdictional authorities and codes shall take precedence over plans, details and specifications in the event of a dispute between the requirements of contract documents and jurisdictional authorities or codes.

H. The position is taken that the Owner is entitled to a project which meets or exceeds the minimum requirements of nationally recognized fire protection standards. All efforts and installations shall be directed toward this end. All deficiencies as noted by fire rating bureaus, insurance service offices or jurisdictional authorities shall be corrected. No extra charges will be allowed on this account.

I. The fire alarm subcontractor shall coordinate all requirements with the electrical, sprinkler, fire protection, elevator, temperature control and/or other subcontractors. Any additional requirements or detail not shown on the drawings, but required for a complete working integrated system will be the responsibility of the fire alarm subcontractor.

J. Temperature control contractor shall connect to appropriate devices or modules provided and installed by fire alarm subcontractor to accomplish HVAC control and shutdown.

K. Work to be performed under this section shall include, but not be limited to the following:
 1. Fire Alarm System
 a. Control Panel
 b. Programming
 c. Audible/Visual Alarm Devices
 d. Pull Stations
 e. Smoke/Heat Detectors
 f. Door Holders
 g. Interface to Elevator Shunt Trip or Starter Equipment
 h. Monitoring of Elevator Shunt Trip or Starter Control Voltage
 i. Interface to Fire Sprinkler Switches and Solenoid Valve
 j. Interface to HVAC Equipment.
 k. Interface to fire/smoke dampers including packaged smoke detectors, where present
 l. Installation of Auto-Dialer.

1.2 RELATED WORK

A. All work performed under this section of the specifications shall be subject to the requirements of both the General and Special Conditions and the Mechanical and Electrical Specification.
1.3 REGULATORY AGENCIES

A. The term jurisdictional authority used in this section of the specification shall include, as applicable, but not be limited to the following:
 1. Local Building Department and Fire Department.
 3. Insurance Services Office or Insuring Authority having jurisdiction.
 4. Owner.

B. The design and installation of all systems of fire protection shall conform to all requirements of applicable codes and publications herein defined:
 1. International Building Code
 2. International Fire Code
 3. NFPA #72
 4. NFPA #70
 5. All State and local ordinances
 6. Underwriters Laboratories.
 7. Factory Mutual.
 10. Occupational Safety and Health Administration.

1.4 SUBMITTALS

A. The successful Supplier shall provide submittal data as required under other portions of these specifications. Submittals shall conform to the instructions set forth in the General and Special Conditions of these specifications entitled Shop Drawings and Submittals.

B. Submittals shall include, at a minimum, the following:
 1. Cut sheets of all equipment and wiring.
 2. AUTOCAD-based floor plans, with location of control panel, batteries, annunciators, primary power supplies, detectors, notification appliances, and each alarm initiating devices. Show single-line fire alarm/voice notification systems riser diagram, device and zone schedules. Each device on the riser should be identified by type and location, with device number. Indicate connection of equipment by circuit runs, or
 3. Summary of battery calculations.
 4. Summary of Voltage Drop calculations.

C. Electronic submittals are acceptable however one hard-copy binder of all materials, including drawings shall be prepared and submitted to the engineer along with electronic submittals.

D. The supplier shall submit to the authority having jurisdiction (AHJ) all necessary documents, plans, calculations and any other details required by NFPA and the AHJ necessary to receive approval and permitting from the AHJ for the work required.
Should the AHJ require Professional Engineering stamping of plans, it shall be the suppliers responsibility to obtain stamping at suppliers cost. ACE Engineering will not stamp plans for this purpose.

1.5 JOB CONDITIONS

A. The Contractor shall determine, and be responsible for, the proper locations and character of inserts for hangers, chases, sleeves, and other openings in the construction required for fire alarm system work, and shall obtain this information well in advance of the construction progress to avoid delay of the work.

B. All existing Fire Alarm systems devices and wire shall be completely removed. **All existing Fire Alarm system devices shall be replaced with new, including but not limited to, Duct Smoke detectors, Fire Suppression Devices, HVAC shutdown, Smoke rating devices, Kitchen Fire Alarm devices, etc. A complete Fire alarm upgrade shall be completed, no change orders will be accepted. The contractor MUST do an initial site inspection prior to bid.**

C. All fees and permits specifically required for fire alarm work, not obtained by others as specified elsewhere shall be applied for and paid for by the fire alarm contractor.

1.6 OPERATION AND MAINTENANCE MANUALS

A. Three (3) sets of operating and maintenance instructions shall be provided the Owner upon completion.

1.7 TRAINING

A. The fire alarm contractor shall supply on-site training at the owner’s facility to familiarize the Owner with the basic operation of the system.

1.8 GUARANTEES AND WARRANTIES

A. The Fire Alarm Contractor shall guarantee to the Owner in writing, all equipment and workmanship for a period of three (3) year after the fire alarm system has been placed in continuous service and has been accepted by all authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Approved Manufacturers/Installers:
1. Edwards
2. Simplex Grinnell
3. Notifier
2.2 FIRE ALARM CONTROL PANEL (FACP)
 A. A master control panel having the features of a fire alarm and voice evacuation control unit and fire alarm and voice evacuation control. The panel shall have central processing, memory, input and output terminals, LCD display units and shall comply with UL 864 and listed and labeled by an NRTL. Provide panel capable of including DVC inside panel. Provide sealed lead-acid batteries.

2.3 LOCAL OPERATING CONSOLE (LOC)
 A. The LOC shall consist of a firefighter's microphone or telephone and associated controls to allow emergency responders and/or building occupants to operate the VEFS including delivery of recorded and/or live messages. The LOC shall also include an integral remote annunciator. A separate remote annunciator may be provided and installed adjacent to the LOC. Remote annunciator shall be backlit LCD, 80-character, with system status LED's for power, alarm, trouble, supervisory and alarm silenced. Provide control switches for system acknowledge, signal silence, drill, and reset.
 1. The LOC and remote annunciator housing(s) shall be flush, shall be suitable for installation in block or stud framed wall and contain a lockable door.

2.4 FIRE ALARM REMOTE ANNUNCIATOR (FAA)
 A. The FAA remote annunciator shall be backlit LCD, 80-character, with system status LED's for power, alarm, trouble, supervisory and alarm silenced. Provide control switches for system acknowledge, signal silence, drill, and reset.
 1. The remote annunciator housing shall be flush, shall be suitable for installation in block or stud framed wall and contain a lockable door.

2.5 DIGITAL VOICE COMMAND (DVC)
 A. Digital audio processor and event driven audio message generator connected directly to fire alarm control panel.
 1. Up to 32 minutes of standard quality digital audio storage of user-selected/created messages and tones.
 2. Capable of supporting remote microphones.
 3. Auxiliary inputs for low-level audio sources and external audio sources such as telephone paging or background music.

2.6 DETECTORS
 A. SMOKE & HEAT DETECTORS: Intelligent, photoelectric, low-profile (less than 2-1/4" high). Equal to Notifier FSP or FST series.
B. Smoke detectors shall not be installed until the project has undergone FINAL cleaning in accordance with NFPA 72. In the event detectors are installed prior to final cleaning, the supplier shall clean or replace all detectors at no additional cost to the Owner. Installation of protective plastic covers does not meet the intent of this requirement.

2.7 MANUAL PULL STATIONS

A. Dual action push-in pull-down style, addressable, surface mounted and red. Equal to Notifier NBG-12LX.

B. All pull stations supplied with clear plastic tamper covers without horn.

2.8 NOTIFICATION APPLIANCES

A. SPEAKER/STROBES – Red (no "ALERT" or other printing on the housing), clear lensed, surface-mounted device box, field-selectable candela ratings, rotary switch for speaker voltage and power settings (1/4, 1/2, 1 and 2 watts), suitable for indoor or outdoor installation.

B. SPEAKER – Red (no "ALERT" or other printing on the housing), surface-mounted device box, rotary switch for speaker voltage and power settings (1/4, 1/2, 1 and 2 watts), suitable for indoor or outdoor installation.

2.9 REMOTE NAC POWER SUPPLIES

A. Where remote power supplies are required for notification appliance circuits, they shall be located in utility spaces only. These locations shall be clearly indicated on shop drawings. Contractor shall provide dedicated 120v circuit to each NAC at no extra cost.

2.10 MAGNETIC DOOR HOLDER

A. Low profile, semi-flush wall mounted holder with catch plate assembly. Equal to Simplex RSG series with chrome finish and multi voltage capable (12VDC,24VDC/120VAC). Provide with proper length catch plate extender rod to facilitate door location swing in relation to holder.

1. Where noted in plan holder shall be floor mounted model in surface box, same model as wall unit.

2.11 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for three years.
C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within three years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

2.12 WIRE AND CONDUIT

A. All wiring shall be installed in accordance with NFPA #70 (NEC).

B. Provide for the protection of all circuits necessary for the operation of notification appliances in accordance with 2007 NFPA 72 section 6.9.10.4.2 and 6.9.10.4.3. Circuits requiring protection under this section shall be run 100% in EMT conduit.

C. It is not acceptable to run wire in accessible ceiling and floor spaces by simply looping wire in the shortest path possible draped over equipment, ducts, pipes, etc. All wire must be run in raceway in a neat and orderly manner.

D. All wiring shall be routed in conduit. Conduit shall have a factory applied red outer finish for ease of identification of fire alarm system. Conceal conduit to the greatest extent possible.

PART 3 - EXECUTION

3.1 DESIGN CRITERIA

A. Approximate fire alarm devices, alarm panel, notification appliances, and detector arrangement is indicated on the drawings. Supplier is responsible for all required devices and locations.

1. Final Speaker Quantity & Locations: Quantity and location of speakers on the plan is approximate. The required quantity and location of speakers may vary depending on the characteristics and capabilities of different manufacturer's speakers. Therefore it is the responsibility of the VEFAS supplier to determine the final quantity and location of speakers in order to meet the requirements for sound levels and intelligibility in NFPA 72 and acceptance by the authority-having-jurisdiction. This shall be done using supplier's software and other engineering resources. In the event the installed system is not accepted by the AHJ, it is the responsibility of the VEFAS supplier to make whatever corrections, including installation of additional speakers, removal of speakers, or relocation of speakers to satisfy the AHJ. This shall be done at no additional cost to the Owner or Engineer.

B. The entire fire alarm system is not shown on plans. The intent is to provide complete fire alarm systems including all necessary manufacturer's components to provide a complete, functional system. The Supplier shall be responsible for preparing working drawings for the total system. Supplier shall provide additional devices as required.
C. The FACP shall provide power, annunciation, supervision, and control for the system. Addressable systems shall be microcomputer based with a minimum word size of eight bits with sufficient memory to perform as specified.

D. Provide notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized as required by NFPA 72.

E. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.

F. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault. The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature at both the FACP and Annunciator that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

G. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to a UL-listed central station. As part of this contract, include the cost of 5 years of subscription service to the call center. The Call center shall be the same center for all the School District #2 school’s Fire alarm systems report to.

H. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

I. The system shall be capable of being programmed from the panel’s keyboard. Programmed information shall be stored in non-volatile memory.

J. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarms and supervisory devices.

K. There shall be no limit, other than maximum system capacity, as to the number of addressable devices that may be in alarm simultaneously.

L. Where the fire alarm/voice evacuation system is responsible for initiating an action in another emergency control device or system, the addressable fire alarm relay shall be in the vicinity of the emergency control device.

M. The supplier shall provide a smoke detector at the fire alarm control panel as shown on the plans. The supplier shall provide additional detectors at any other control units or sub-panels required by their system design if required by the Authority Having Jurisdiction.

3.2 SYSTEM OPERATION

A. An alarm signal shall automatically initiate the following functions:
1. Transmission of an alarm signal to a UL-listed central station
2. Visual indication of the device operated on the control panel, and on remote annunciators.
3. Continuous actuation of all alarm notification appliances.
4. Announcement over system speakers of a pre-recorded fire announcement.
5. Recording of the event electronically in the history log of the fire control system unit.
6. All control relays shall change state.

B. A supervisory signal shall automatically initiate the following functions:

1. Visual indication of the device operated on the FACP, and on the remote annunciator, and sounds the audible alarm at the respective panel.
2. Transmission of a supervisory signal to a UL-listed central station.
3. Recording of the event electronically in the history log of the control unit.

C. A trouble condition shall automatically initiate the following functions:

1. Visual indication of the system trouble on the FACP, on the remote annunciator, and sound the audible alarm at the respective panel.
2. Transmission of a trouble signal to a UL-listed central station.
3. Recording of the event in the history log of the control unit.

D. The system shall continuously check for malfunctions or troubles. Upon detecting any fault the following shall occur.

1. Activate a reporting signal tone at main panel.
2. Indicate the point location on the main F.A. panel as to the location and type of the fault.
3. Add all information to the history log of the panel.

3.3 VOICE EVACUATION SYSTEM FUNCTIONS

A. Notification Appliance Network - The audible notification appliance network shall consist of speakers located to provide intelligible instructions at all locations in the building. The Voice Evacuation System announcements shall take priority over all other audible announcements of the system including the output of the fire alarm system in a normal or alarm state. When a Voice Evacuation announcement is activated during a fire alarm, all fire alarm system functions shall continue in an alarm state except for the output signals of the fire alarm audible and visual notification appliances.

B. Voice Notification - An autonomous voice notification control unit is used to monitor and control the notification appliance network and provide consoles for local operation. Using a console, personnel in the building can initiate delivery of pre-recorded voice messages, and provide live voice messages and instructions. The autonomous voice notification control unit will temporarily override audible fire alarm notification while delivering Voice Notification messages to ensure they are intelligible.

C. Voice Notification Messages
1. Voice notification messages shall utilize a female voice at 1000 Hz tones or as otherwise required by NFPA 72 and shall be similar to the following:
 a. "May I have your attention please. May I have your attention please. A fire emergency has been reported in the building. Please leave the building by the nearest exit." (Provide a 3 second pause.) "May I have your attention please, (repeat the message)."
 b. Up to an additional four messages shall be recorded at the Owner's discretion. The fire alarm supplier shall consult with the owner and provide messages as directed.

2. The LOC shall incorporate a Push-To-Talk (PTT) microphone, redundant controls and system status indicators of/for the system. The LOC shall incorporate microphone override of any tone generation or prerecorded messages. The unit shall be fully supervised from the control panel.

3. Auxiliary microphone locations shall incorporate a Push-To-Talk (PTT) microphone, to allow Public Address paging in the facility. The Public Address paging function shall not override any alarm or notification functions and shall be disabled by such signals.

3.4 INSTALLATION

 A. Final connections between all fire alarm equipment and the wiring system shall be made only by or under the supervision of an authorized representative of the system manufacturer.

 B. The fire alarm contractor shall provide red labels:
 1. On the fire alarm control panel indicating the panel and circuit supplying power to the panel.
 2. Next to the circuit breaker inside the panel supplying power to the fire alarm control panel stating “FIRE ALARM CIRCUIT CONTROL”.

3.5 FINAL TESTS AND REPORT

 A. Upon completion of the installation and system tests, the certified test technician shall submit to the Engineer three copies of a written report on forms provided by the manufacturer, to indicate the system has been fully tested in supervision, trouble and alarm modes and is fully operational conforming to the letter of these Specifications.

3.6 SYSTEM INSPECTIONS

 A. The contractor shall provide FOUR inspections of each system under this Contract during the THREE (3) year warranty period. The first inspection shall be at the six month interval after system acceptance and the second at the 12 month interval. The third and fourth inspections shall be at the 24 month and 36 month intervals after system acceptance. Inspections shall include confirmation that the system is in proper
working order. Inspections shall also include a complete checkout of the control and alarm system. Documents certifying satisfactory system conditions shall be submitted to the Owner's technical representative upon completion of each inspection.

END OF SECTION 28 31 11
SITEWORK

The governing specifications for the civil portion of this work are:

 (Excluding Part 4 of each section, Measurement and Payment)
- Town of West Yellowstone Public Works Standards (Attached)

02110 Geotextiles
02112 Removal of Existing Pavement, Concrete Curb, Sidewalk, Driveway and/or Structures
02113 Adjusting Existing Manholes, Lampholes, Inlets, Water Valve Boxes, Water Service and Fire Hydrants to Grade
02114 Relocating or Removing Utility Poles, Street Signs and Mailboxes
02221 Trench Excavation & Backfill *
02225 Flowable Fill
02230 Street Excavation, Backfill & Compaction
02234 Subbase Course
02235 Crushed Base Course
02510 Asphaltic Concrete Pavement
02528 Concrete Curb & Gutter
02529 Concrete Sidewalk, Driveways, Approaches, Curb Turn Fillets, Valley Gutters and Misc. Conc. Construction
02581 Pavement Markings and Markers
02660 Water Distribution Systems
02720 Storm Drain Systems
02725 Drainage Culverts
02730 Sanitary Sewer Collection Systems
03210 Reinforcing Steel (Exterior Site Items Only)
03310 Structural Concrete (Exterior Site Items Only)

1. In the event of a discrepancy between MPWSS, the Town of West Yellowstone Public Works Standards, and the plans, the most stringent requirement shall apply.
2. The above documents are sections of MPWSS and are made part of the Contract Documents by reference. Copies of referenced documents are available for review at the office of TD&H Engineering.
TOWN OF WEST YELLOWSTONE
MONTANA

Adopted: June 1996

TOWN OF WEST YELLOWSTONE
PUBLIC WORKS STANDARDS

The following is a listing of minimum standards applicable to all public works projects conducted in and for the Town of West Yellowstone. The list is not intended to be all inclusive nor limited to the items listed, but rather is to set minimum standards, philosophies and level of quality for materials to assure reliable and maintainable public works facilities in the Town. Wherever standards or code books are referred to, the most recent edition of said standard shall apply.

MINIMUM STANDARDS

- Montana Public Works Standard Specifications
- Uniform Building Code (UBC)
- Uniform Plumbing Code (UPC)
- American Waterworks Association Standards (AWWA)
- Montana Water Quality Division Standards for Water and Sewer Systems (includes "Circulars WQB-1 and WQB-2")

WATER SYSTEMS

- Connection to Town water supply system required

- AWWA C-151 - Ductile Iron Pipe
 - 6-inch minimum diameter
 - Class 50 minimum
 - Tyton (push on) joints
 - Cadd welded between pipes and all fittings (continuity of system)
 - Cement mortar lined
 - Cutting of existing paved streets prohibited, jacking or pushing under streets required
 - Pipe location to be under sidewalk or in alleys for future accessibility, exceptions are where pipelines must cross under paved roadways
 - No dead end lines, all main lines must be looped
 - Insulate all road crossings with rigid insulation (attached drawing)

- Valves and Fittings
 - AWWA C-509 - Resilient seated gate valve (Mueller or Waterous preferred)
 - One valve operator key per every ten (10) valves
 - C-153 - Ductile iron mechanical joint fittings
 - All valves and fittings cadd welded to main line piping
 - Tyler type 6850 valve boxes and covers (marked "water")
• Fire Hydrants
 - Waterous Pacer Model WB-67 AWWA C-502
 - 7 foot bury depth (see Standard Drawings)
 - Resilient seated gate valve for isolation
 - 2 to 3 inch diameter by 8 foot natural pole for location mark
 - lead line length not to exceed 15 feet unless approved by Town Engineer

• Service Connections and Service Line
 - Full circle bronze service saddle
 - AWWA corporation stop at main
 - Schedule K copper service line to property line
 - Mueller Oriseal curb stop (teflon coated ball valve)
 - Service line sized per Uniform Plumbing Code on fixture unit basis
 - Inventory sheet and permit required per each individual service
 - Permits and fees required as per Town standards
 - One curb stop key required per every ten (10) valves
 - Dielectric unions required where change of service line materials
 - Reduced pressure type backflow preventors required if private well to remain in service

• Meters
 - Sensus SR-II water meters with self-generating remote readout
 - Meter mounted in freeze proof location or meter box (rigid insulation required)
 - Remote register mounted on fence or building front to be visible from nearest plowed roadway
 - Meter and register to be readily accessible

SEWER SYSTEM No french drains for floor drains - see drawing for sump/sand trap

• Cutting of Existing Paved Streets Prohibited
 - Jacking or boring required

• ASTM D-3034 - Rubber Gasketed PVC Pipe
 - 8-inch minimum diameter
 - Minimum slope for two (2) fps self-cleaning velocity
 - Metal backed warning tape required

• Service Lines - ASTM D-3034 - PVC
 - 4-inch minimum diameter
 - Factory wye required
 - Metal backed warning tape to property line

• Manholes
 - precast preferred
 - smooth covers marked "sewer", Municipal Castings 305A, or equivalent

Page 2 of 5
STORM SEWER No french drains allowed - connect to storm drain system

- Bell and spigot Concrete Pipe - ASTM C-76, Class III minimum
 - 12-inch minimum diameter
 - Minimum slope for 2 fps self-cleaning velocity
 - Designated by modified Rational Method approach, 75% maximum capacity for 2 year event, capability of carrying a 10 year event with surcharge but without flooding out on ground surface.
 - Designed and constructed in accordance with Chapter 13.12 "Storm Sewer Facilities" of the West Yellowstone Code

- Catch Basins
 - Concrete as per standard drawing with 12-inch lead line to connection at main line (manhole required at mainline connection)
 - Curb inlet and grating as per standard drawing, match adjacent curb

- Manholes
 - precast
 - smooth covers in paved areas marked "storm", Municipal Castings 305A, or equivalent

STREETS

- Minimum 42 foot width residential (60 foot right-of-way), minimum 80 foot width commercial (100 foot right-of-way)

- Construction
 - Minimum 0.20 plant mix pavement, Montana Department of Transportation Grade B aggregate gradation and 120-150 liquid asphalt grade
 - Minimum 4-inches of ¾-inch crushed aggregate base course (Montana Dept of Transportation Type A, Grade 2 crushed top surfacing) on shaped and compacted subgrade
 - Class A compaction

- Curb and Gutter
 - "Rolled" style as per standard drawing in residential areas
 - "High back" with rounded face as per standard drawing in commercial areas
 - Concrete and aggregates as per sidewalk specifications (below)
 - Number 4 reinforcing bar in curbs at accesses
 - Slope not less than 0.30% (unless approved by Town Engineer)

- Utility placement outside of paved areas with possible exception of storm sewer ("No Cut" Ordinance in effect)

- Provision for roadway illumination at regular intervals (including conduit under sidewalk and brick paver block out squares)
SIDEWALK

- Minimum 4000 psi compressive strength, mix design approval by Town Engineer
- Concrete aggregate material from outside Madison River drainage area (Wear Test 40%, Degradation Test 45%)
- Decorative style to match existing; 30-inch maximum squares broomed alternate directions
- Dimensions
 - 4-inch minimum thickness
 - 6-inch minimum thickness with wire reinforcing or fibermesh in driveway areas or where heavy traffic or plowing is anticipated. Dowel into adjacent concrete when repairing sidewalk in damaged driveway areas
 - 5 foot minimum width in residential areas
 - 10 foot minimum width in commercial areas
- No encroachments as per existing Town ordinance

BEAUTIFICATION

- Provide street corner beautification as per master plan
 - Brick paver conversation areas at commercial corners
 - Brick paver block outs for lighting/illumination
- Brick Pavers
 - Wescon keyhole style to match existing brick pavers
 - 4000 psi minimum strength
 - Sand bed, compaction, and installation per manufacturer's recommendations

GUARANTEE

All work performed within Town rights-of-way shall be warranted by the Developer against defects in materials and/or workmanship for a period of not less than one (1) year from the date of acceptance by the Town.

Upon notification by the Town of defects in materials or workmanship during the one (1) year period, the Developer shall promptly repair, correct, or otherwise replace the defect to the satisfaction of the Town of West Yellowstone.

ATTACHMENTS

- Standard Drawings
 - Fire hydrants
 - CADWeld Detail
 - Water Service Line Insulation Detail
- Water Service Connection Detail
- Catch Basin Box
- Catch Basin Details
- Street Details
- Landscaping Details

• Standards for Public Parking Development

-END OF PUBLIC WORKS STANDARDS-
NO FRENCH DRAINS — MINIMUM P-TRAP & CONNECTED TO SANITARY SEWER —

GARAGE OR SERVICE STATION

SUMP/SAND TRAP

(TYPICAL)

NOT TO SCALE

![Diagram of garage sump trap with labels: removable grate, solid lid, clean out, vent, inlet, outlet, 2" x 2" mud seal with baffles (optional).]
FIRE HYDRANT
TWO COATS OF ASPHALT VARNISH
BELOW GRADE, TWO COATS OF
RED ABOVE GRADE

BREAK-AWAY FLANGE
FINISH GRADE

VALVE BOX

GATE VALVE
NEW 6" PIPE
AS REQUIRED

CONCRETE THRUST BLOCK

POUR CONCRETE PAD 15"x15"x4"
DEEP UNDER HEEL OF HYDRANT

MINIMUM OF 1/4 CU. YD. OF
GRAVEL TO 18" UNDER LOWEST
PART OF HYDRANT AND UP TO
6" ABOVE ANY WEEP HOLES OR
DRAIN OPENINGS.

CONCRETE PLACED TO DISTRIBUTE
THRUST OVER 4 SQ. FT. OF
VERTICAL UNDISTURBED EARTH (TYP)

FIRE HYDRANT RELOCATION DETAIL A
NOT TO SCALE
NOTES:
1. ALL FITTINGS TO MAINTAIN ELECTRICAL CONDUCTIVITY.
2. DUCTILE IRON PIPE TO BE TAPPED DIRECT.
CATCH BASIN BOX

SCALE: 1/4" = 1'-0"

NOTES:

1. IF INLET IS ADJUSTED TO GRADE W/ ANCHOR BOLTS, PACK AREA UNDER FRAME W/ NON-SHRINK GROUT.
2. ELEVATION AND ANGLE OF OUTLET PIPES WILL VARY. SEE PLAN & PROFILE SHEETS FOR DETAILS.
TOWN OF WEST YELLOWSTONE
STANDARDS FOR PUBLIC PARKING DEVELOPMENT

The following standards supplement the Town of West Yellowstone’s Public Works Improvement Standards adopted June 1996, and as such become a part of that document on the date of adoption.

INTENT

Developers and/or private individuals shall have the right to develop public parking areas within Town alleys and interior block areas, provided such action is in accordance with all provisions of these standards, is approved by action of the Town Council, and is issued a permit for construction from the Town Clerk.

RIGHT OF REVIEW

Any proposal by any person(s), organizations or entities to use Town-owned property or rights-of-way for the purpose of developing parking facilities shall be subject to review by the Town and/or their designated engineering representative for conformance to the overall masterplan for parking development and these standards as set forth herein.

MASTERPLAN

Public parking facilities proposed for development on Town owned property or rights-of-way shall be developed in conformance to each of the following provisions. Certain of these provisions are more thoroughly described in subsequent sections of this standard.

• The surfacing section will be constructed of hot plant mix pavement or nonreinforced concrete, each with a crushed gravel base.

• Paved areas are to be built on minimum slopes and storm drainage facilities shall be provided that are designed by a registered professional engineer.

• Storm drainage inlets will be located at certain points (generally interior corners of park areas) located out of traveled areas to avoid problems with snow packing.

• Pavement markings delineating parking areas shall be provided.

• A five (5) foot wide non-paved buffer zone shall be provided adjacent to all private properties for accommodation of utilities.

• Provision shall be made where necessary to accommodate future parking lot lighting.

• Coordination with all utilities is required and evidence of coordination shall be provided with final plans.

• Existing asphalt or other existing improvements in public rights-of-way damaged by construction shall be repaired to a condition equal or better than original.
STORM DRAINAGE FACILITIES

Storm drainage facilities shall be designed and constructed in accordance with the following provisions:

- Pipe in public rights-of-way shall be 12-inch diameter Class III reinforced concrete.
- Minimum pipe slope shall be that required to maintain two feet per second velocity.
- Ten inch Class 3 non-reinforced concrete pipe may be used in specific hardship situations, provided at least two feet of cover can be maintained and specific approval is granted by the Town.
- Class A compaction required (96% ASTM D-698).
- Catch basins shall meet the provisions of the Town Standards.
- Inlets shall be conform with the Town Standards (curb inlet type preferred) or be specifically reviewed and approved by the Town Engineer. Alternately, a modified municipal inlet casting (Neenah R-3335 modified to match Town Standard) may be used. Inlet grating for systems feeding pipes less than 12 inches in diameter shall not have openings greater than two (2) inches in any dimension.
- Manholes shall be provided at all changes in pipe direction. Manholes may be required to have stubouts for future connections, based on the Engineer’s review and recommendations.
- Use of temporary dry wells is permissible, provided that stubouts for future piping connections are provided and the installation of the dry well is approved by County, State, and (where applicable) Federal agencies. Preferred practice is to have the dry well conform to the standard catch basin or manhole configuration and perforated piping installed exterior to the structure that can be later replaced with regular piping when permanent connection to the storm drain system is accomplished.
- Storm drainage piping shall be connected to the back of existing catch basins generally located at the alley entrance to Town streets. Connections shall be made such that the pipe invert of the new system is no lower than the pipe invert of the catch basin leading to the Town’s storm drainage system. Additionally, the new pipe connection shall be grouted both interior and exterior to the catch basin.
- Sidewalk disturbed for connection to catch basins shall be held to a minimum area and be replaced in accordance with existing Town Standards. Among these requirements are 4,000 psi concrete, concrete aggregates from outside the Madison River drainage area, wire reinforcing in alley approaches, and fiber mesh reinforcing in the concrete mix. Doweling into adjacent remaining sections of sidewalk may also be required to assure continuity between new and old sections.

PAVEMENT SECTION

Hot plant mix pavement or non-reinforced concrete pavements may be used subject to the following provisions:

- Plant mix shall utilize % aggregate in conformance with "Grade B" as specified in the Montana Department of Highways Standard Specifications for Road and Bridge
Construction (MDT Specs). Placement, compaction, and finishing shall be in accordance with MDT Specs.

- Minimum paving thickness shall be 0.20 feet and the liquid asphalt grade shall be 120-150.
- A minimum of 1% (2% preferred) surface slope shall be designed in at least one direction.
- 4-inches of ¾” crushed gravel base shall be provided which meets the requirements of Type A, Grade II as per the MDT Specs. Compaction shall be to Class A standards. The subgrade shall be watered, shaped and compacted to Class A standards prior to the placement of the crushed base course.
- Concrete pavement may be proposed as an alternate. Concrete shall meet the requirements of the existing Town Public Works Standards and be placed in a thickness not less than 8 inches unless a specific design by a registered engineer indicates adequate legal highway loading capacity. Proposed mix design for the concrete material shall be submitted to the Engineer for approval prior to construction. Placing and finishing shall be in accordance with current MDT Specifications.

SLOPES

Parking lots or other paved areas shall be designed to have a minimum of 1% slope (2% preferred) in at least one direction. Layout and slope shall be designed to collect the water at the catch basin areas and not allow any drainage onto adjacent properties or to surface pond for an appreciable period of time.

LIGHTING

The masterplan includes future lighting in alley parking areas. Provision shall be made in construction to accommodate such future lighting systems, including the placement of electrical conduit where necessary (as directed by the Town) under areas to be paved. Any lighting installed by the developer shall meet the standards for such as set forth in the Town Public Works Standards. Underground service is required and light poles installed shall be protected by bollards or other positive means for reducing collisions.

ACCOMMODATION OF FUTURE UTILITIES

The developer shall recognize that Town alleys are the main utility corridor and shall not prohibit future utility installation/repair by the proposed parking or paving improvements. Provision shall be made for accommodation of future utilities by providing a 5 ft. minimum width of unpaved area adjacent to private properties. Alternately, the area can be paved to match planned improvements but the developer shall be responsible for all necessary pavement repair arising from the installation of Town-approved utility work. This provision shall remain in effect until such time as the Town establishes a mechanism for maintenance of developer-paved areas in the interior block and alley areas and accepts responsibility for them.

MAINTENANCE

Developers shall be responsible to maintain improvements they construct in Town-owned interior block areas and alleys until the Town establishes a mechanism for maintenance of these areas and accepts responsibility for them. This includes, but is not necessarily limited to, snow removal, cleaning, sweeping, repairing, crack sealing, etc. Evidence of accepting this provision shall be documented by a written agreement with the Town to be developed and executed at the time of plan submittal.
MISCELLANEOUS PROVISIONS

The following provisions may also be required prior to plan approval:

• Utility covers shall be adjusted to final grade and shall be encircled with a concrete ring in paved areas. The ring will include reinforcement as per current Town Public Works Standards.

• A bond for sidewalk repair is required whenever existing sidewalks and/or curbs will be disturbed. This bond shall be posted at the Town offices prior to receiving plan approval.

• The Town reserves the right to review plans for storm drainage facilities on private property that are proposed to be connected to the Town storm drain system in order to assure no negative impacts to the Town’s system will result from the proposed design, materials, or construction methods.

PERMIT REQUIRED

A permit from the Town of West Yellowstone is required prior to any construction occurring within public rights-of-way. This permit shall constitute written approval from the Town for the proposed plans that have been submitted. The Developer and/or his designated representative shall appear in person to obtain the written permit from the Town, at which time final coordination on such items as construction schedule, maintenance of access, utility avoidance, Town utility interference, and other similar issues can be addressed. The Town shall be invited to a final inspection upon completion of construction to assure adherence to these specifications and initiate the beginning of the one (1) year warranty period.

GUARANTEE

All work performed within Town rights-of-way shall be warranted by the Developer against defects in materials and/or workmanship for a period of not less than one (1) year from the date of acceptance by the Town.

Upon notification by the Town of defects in materials or workmanship during the one (1) year period, the Developer shall promptly repair, correct, or otherwise replace the defect to the satisfaction of the Town of West Yellowstone.

-- END OF STANDARDS FOR PUBLIC PARKING DEVELOPMENT --
the Public Works Dept. recognizes the responsibility to provide water and sewer service to all properties within Town boundaries, as well as a commitment to maintain the integrity of the paved alleys. Toward that goal, this dept. makes the following recommendations.

1- When accessing utilities adjacent to the paved section of all alleys, Jack and Bore is the referred procedure.

In the event the paved section of an alley must be removed, a performance bond of $20.00 per square foot of pavement section cut out, will be paid to the town clerk, before excavation takes place.

2- Compaction of the excavated area will be restored to a minimum density of 106 pounds per cubic foot.

3- the remaining edges of alley pavement will be squarely cut with the appropriate saw or pavement cutter.
4- The removed section of pavement will be replaced with 3 inches of quality asphalt patch material, no later than 5 business days after the initial excavation.

Compaction of the asphalt patch is required, wacker or plate compactor sufficient.

5- All cleanup of debris and pavement materials will be the responsibility of the excavation permittee and/or property owner.

6- The Town of West Yellowstone Public Works reminds all parties involved OSHA Safety Regulations will be followed.
REPORT OF GEOTECHICAL INVESTIGATION
WEST YELLOWSTONE SCHOOLS ADDITION
WEST YELLOWSTONE, MONTANA

AUGUST 2015

CLIENT: JGA Architects
3395 Gabel Road
Billings, MT 59102

ENGINEER: TD&H Engineering
234 E. Babcock, Suite 3
Bozeman, MT 59715

Great Falls • Bozeman • Kalispell, Shelby, Montana
Spokane, Washington • Lewiston, Idaho
Watford City, North Dakota • Media, Pennsylvania

234 E. Babcock, Suite 3 • Bozeman, MT 59715 • (406) 586-0277
Table of Contents

1.0 EXECUTIVE SUMMARY ... 1

2.0 INTRODUCTION... 2
 2.1 Purpose and Scope ... 2
 2.2 Project Description ... 2

3.0 SITE CONDITIONS ... 3
 3.1 Geology and Physiography ... 3
 3.2 Surface Conditions ... 3
 3.3 Subsurface Conditions .. 4
 3.3.1 Soils ... 4
 3.3.2 Ground Water ... 4

4.0 ENGINEERING ANALYSIS ... 5
 4.1 Introduction .. 5
 4.2 Site Grading and Excavations ... 5
 4.3 Conventional Shallow Foundations .. 5
 4.4 Floor Slabs and Exterior Flatwork ... 6
 4.5 Pavements & Gravel Access Roads ... 6

5.0 RECOMMENDATIONS ... 7
 5.1 Site Grading and Excavations ... 7
 5.2 Conventional Shallow Foundations .. 8
 5.3 Floor Slabs and Exterior Flatwork ... 9
 5.4 Pavements & Gravel Access Roads .. 9
 5.5 Continuing Services ... 10

6.0 SUMMARY OF FIELD AND LABORATORY STUDIES .. 12
 6.1 Field Explorations ... 12
 6.2 Laboratory Testing .. 12

7.0 LIMITATIONS .. 14
APPENDIX

♦ Boring Location Map (Figure 1)
♦ Logs of Exploratory Borings (Figures 2 through 5)
♦ Laboratory Test Data (Figures 6 and 7)
♦ Soil Classification and Sampling Terminology for Engineering Purposes
♦ Classification of Soils for Engineering Purposes
1.0 EXECUTIVE SUMMARY

The geotechnical investigation for the proposed addition to the West Yellowstone School located at 411 North Geyser Street, encountered well-graded sand throughout the depth of the investigation. The seismic site class is D, and the risk of seismically-induced liquefaction or soil settlement is considered low and does not warrant additional evaluation. The subsurface conditions encountered pose no significant risk to the proposed construction. At the current relatively densities, the native sand is susceptible to settlements; however, proper compaction during construction will help to reduce the risk to within tolerable limits. In our opinion, the site is suitable for conventional shallow foundations and slab-on-grade construction bearing on properly compacted native sand with a recommended allowable bearing of 2,500 pounds per square foot (psf) provided the recommendations included in this report are followed.
2.0 INTRODUCTION

2.1 Purpose and Scope

This report presents the results of our geotechnical study for the proposed addition to the West Yellowstone School located at 411 North Geyser Street. The purpose of the geotechnical study is to determine the general surface and subsurface conditions at the proposed site and to develop geotechnical engineering recommendations for support of the proposed structure and design of related facilities. This report describes the field work and laboratory analyses conducted for this project, the surface and subsurface conditions encountered, and presents our recommendations for the proposed foundations and related site development.

Our field work included drilling four soil borings across the proposed site. Samples were obtained from the borings and returned to our Great Falls, Montana materials laboratory for testing. Laboratory testing was performed on selected soil samples to determine engineering properties of the subsurface materials. The information obtained during our field investigations and laboratory analyses was used to develop recommendations for the design of the proposed foundation systems.

This study is in general accordance with the proposal submitted by Mr. Wade DeBoo, PE of our firm dated June 4, 2015. Our work was authorized to proceed by Mr. Terry Sukut of JGA Architects by his signed acceptance of our proposal.

2.2 Project Description

It is our understanding that the proposed project consists of, in part, a single-story, wood-framed building addition with an attached gymnasium of masonry construction. Additional aesthetic masonry is anticipated for end caps and columns with metal siding on the exterior. We understand that a steel and concrete mezzanine is also planned for areas adjacent to the gymnasium. The full structure is to be approximately 24,000 square feet in plan. The structure is proposed to be supported on conventional shallow foundations incorporating interior slab-on-grade construction. Structural loads were not available at the time of this report. However, for the purposes of our analysis, we have assumed that wall loads will be less than 3,500 pounds per lineal foot and column loads will not exceed 250 kips.

Site development will most likely include landscaping, concrete flatwork, asphalt cement concrete and possibly gravel surfacing for parking lots and/or access roads. If loadings, locations or conditions are significantly different from those described above, we should be notified to reevaluate the recommendations contained in this report.
3.0 SITE CONDITIONS

3.1 Geology and Physiography

The site is geologically characterized as Quaternary-aged glacial deposits consisting of dominantly till, outwash, and local glacial lake deposits. Similar deposits are generally comprised of intermixed gravels, sands, silts, and clays of varying proportions. However, in our experience, soils in the vicinity of this project tend to be more granular.

Based on the subsurface conditions encountered, the site is considered to fall under seismic Site Class D. The appropriate International Building Code (IBC) seismic design parameters for the site include site coefficients of 1.03 and 1.61 for F_a and F_v, respectively. The recommended design spectral response accelerations at short periods (S_{D_s}) and at 1-second period (S_{D_1}) are 0.810g and 0.424g, respectively. These values represent two-thirds of the mapped response accelerations following correction for the appropriate site classification. The likelihood of seismically-induced soil liquefaction or settlement for this project is considered slight and does not warrant additional evaluation.

3.2 Surface Conditions

The proposed project site is located in West Yellowstone at 411 North Geyser Street. The area proposed for the addition currently consists of a gravel access road and various play spaces utilized by the existing school. Based on background information and site observations, the site is
considered nearly flat with minimal grade change observed within the limits of the proposed addition.

3.3 Subsurface Conditions

3.3.1 Soils

The subsurface soil conditions encountered are considered very consistent based on our exploratory drilling and soil sampling. In general, the subsurface soil conditions encountered within the borings consist of well-graded sand extending to a depth of at least 21.4 feet, which was the maximum depth investigated. Limited amounts of surficial topsoil and silty sand were observed and in general exhibited thicknesses of less than 18 inches.

The subsurface soils are described in detail on the enclosed boring logs and are summarized below. The stratification lines shown on the logs represent approximate boundaries between soil types and the actual in situ transition may be gradual vertically or discontinuous laterally.

WELL-GRADED SAND

The well-graded sand is generally considered medium dense as indicated by penetration resistance values which ranged from 10 to 30 blows per foot (bpf) and averaged 18 bpf. Four samples of the material were tested and contained between 5 and 16 percent gravel, between 78 and 90 percent sand, and between 4 and 6 percent silt and clay. The natural moisture contents varied from 3 to 12 percent and averaged 7 percent. The well-graded sand contained varying amounts of gravel and silt. Based on testing results, slight variations in the materials classification such as well-graded sand with silt, well-graded sand with gravel, and well-graded sand with silt and gravel occurred. However, based on visual observation and the relatively small percentages of silt and gravel, the overall material was considered to be homogenous and simply called well-graded sand for the purposes of this report.

3.3.2 Ground Water

Ground water was not encountered within the borings to depths ranging from 16.2 to 21.4 feet below the ground surface. The presence or absence of observed ground water may be directly related to the time of the subsurface investigation. Numerous factors contribute to seasonal ground water occurrences and fluctuations, and the evaluation of such factors is beyond the scope of this report.
4.0 ENGINEERING ANALYSIS

4.1 Introduction

The subsurface conditions encountered on site are of little concern to the proposed construction. At the relative densities observed in the borings based on Standard Penetration Testing (SPT), the native sands are susceptible to some minor settlements; however, proper compaction during construction will help in densifying the native sand and reducing the overall risk of future settlements.

4.2 Site Grading and Excavations

The ground surface at the proposed site is considered relatively flat and experiences minimal grade change within the limits of the proposed construction. Based on our field work and assuming the proposed finished floor elevation will be within one foot of existing site grades, limited surficial silty sand and well-graded sands will be encountered in foundation excavations to the depths anticipated. Based on the borings, ground water should be below the anticipated depths of footing and utility excavations.

4.3 Conventional Shallow Foundations

Considering the subsurface conditions encountered and the nature of the proposed construction, the addition can be supported on conventional shallow foundation bearing on properly compacted native sands. Based on our experience, the theory of elasticity, and using an allowable bearing pressure of 2,500 psf, we estimate the total settlement for footings will be less than ¾-inch. Differential settlement within the limits of the structure and between bearing locations should be on the order of one-half this magnitude.

The lateral resistance of spread footings is controlled by a combination of sliding resistance between the footing and the foundation material at the base of the footing and the passive earth pressure against the side of the footing in the direction of movement. Design parameters are given in the recommendations section of this report.

If new footings for additions are placed adjacent to the existing footings, the increased stress on the subgrade due to the new footings may cause settlement of the existing footings. New spread footings placed adjacent to the existing structure should bear at approximately the same elevation as the existing footings. Also the new footings should either be separated from the existing footings by a lateral distance greater than at least one footing width or structurally connected to the existing footing and the composite foundation sized to meet the requirements outlined in this report. For
purposes of our analysis, we have assumed that these requirements will be satisfied during the structural design of the addition.

4.4 Floor Slabs and Exterior Flatwork

The natural on-site soils, exclusive of topsoil, are suitable to support lightly to moderately loaded, slab-on-grade construction provided proper compaction is achieved during construction. Based on the consistency and the limited fines content (material passing the #200 sieve) contained within the native well-graded sand, the use of a separate cushion layer below the slab is not required. Native sands are suitable to act as a leveling course provided they are placed and compacted per our recommendations.

4.5 Pavements & Gravel Access Roads

A roadway section is a layered system designed to distribute concentrated traffic loads to the subgrade. Performance of the roadway structure is directly related to the physical properties of the subgrade soils and the magnitude and frequency of traffic loadings. Design procedures are based on strength properties of the subgrade and pavement materials, along with the design traffic conditions. Traffic information was not available at the time of this report. However, based on the intended use of the proposed addition, we have assumed that traffic for the parking lots and access roads will consist of primarily passenger-type vehicles with relatively frequent bus traffic. For the purposes of our analysis, we have assumed that the roadway areas could see as much as 100 passenger vehicles and 10 buses per day. Based on a standard 20-year design life, this equates to a design equivalent single-axle loading of approximately 200,000 ESALs.

The potential worst case subgrade material is well-graded sand which is classified as an A-1-b soil in accordance with the American Association of State Highway and Transportation Officials (AASHTO) classification. AASHTO considers this soil type to be an excellent subgrade material when properly prepared and compacted. Typical California Bearing Ratio (CBR) values for this type of soil range from 20 to 40 percent. As part of the subgrade preparation, it will be necessary to scarify and recompact the subgrade soils prior to placing fill material associated with the pavement section. The fill should be selected, placed, and compacted in accordance with our recommendations.

The pavement section presented in this report is based on an assumed CBR value of 20 percent, assumed traffic loading as outlined above, recommended pavement section design information presented in the Asphalt Institute and AASHTO Design Manuals, and our past pavement design experience in the area.
5.0 RECOMMENDATIONS

5.1 Site Grading and Excavations

1. All topsoil and organic material, asphalt, concrete and related construction debris should be removed from the proposed building and pavement areas and any areas to receive site grading fill. For planning purposes, a minimum stripping thickness of 6 inches is recommended. Thicker stripping depths may be warranted, for example below the playground area, to remove all detrimental organics as determined once actual stripping operations are performed.

2. All fill and backfill should be non-expansive, free of organics and debris and should be approved by the project geotechnical engineer. The on-site soils, exclusive of topsoil, are suitable for use as backfill and general site grading fill on this project. All fill should be placed in uniform lifts not exceeding 8 inches in thickness for fine-grained soils and not exceeding 12 inches for granular soils. All materials compacted using hand compaction methods or small walk-behind units should utilize a maximum lift thickness of 6 inches to ensure adequate compaction throughout the lift. All fill and backfill shall be compacted to the following percentages of the maximum dry density determined by a standard proctor test which is outlined by ASTM D698 or equivalent (e.g. ASTM D4253-D4254).

 a) Below Foundations or Spread Footings 98%
 b) Below Slab-on-Grade Construction... 95%
 c) Foundation Wall Backfill.. 95%
 d) Below Streets, Parking Lots, or Other Paved Areas 95%
 e) General Landscaping or Nonstructural Areas 92%

Based on our experience with the sandy soils around West Yellowstone, it will be necessary to add considerable moisture to the native sand in order to achieve compaction. A water truck and significant source of water should be anticipated. Prior to using any onsite water sources, written approval from the school will be required.

3. It is the responsibility of the Contractor to provide safe working conditions in connection with underground excavations. Temporary construction excavations greater than four feet in depth, which workers will enter, will be governed by OSHA guidelines given in 29 CFR, Part 1926. For planning purposes, subsoils encountered
in the borings are considered Type C. The soil conditions on site can change due to changes in soils moisture or disturbances to the site prior to construction. Thus, the contractor is responsible to provide an OSHA knowledgeable individual during all excavation activities to regularly assess the soil conditions and ensure that all necessary safety precautions are implemented and followed.

5.2 Conventional Shallow Foundations

The design and construction criteria below should be observed for a spread footing foundation system. The construction details should be considered when preparing the project documents.

4. Both interior and exterior footings should bear on properly compacted native sand and should be designed for a maximum allowable soil bearing pressure of 2,500 psf provided settlements as outlined in the Engineering Analysis are acceptable.

5. Soils disturbed below the planned depths of footing excavations should be re-compact ed per the requirements of Item 2 above.

6. Footings shall be sized to satisfy the minimum requirements of the applicable building codes while not exceeding the maximum allowable bearing pressure provided in Item 4 above.

7. Exterior footings and footings beneath unheated areas should be placed at least 48 inches below finished exterior grade for frost protection.

8. Lateral loads are resisted by sliding friction between the footing base and the supporting soil and by lateral pressure against the footings opposing movement. For design purposes, a friction coefficient of 0.30 and a lateral resistance pressure of 200 psf per foot of depth are appropriate for footings bearing on and backfilled with compacted native sand.

9. New footings placed adjacent to the existing structure should bear at the same approximate elevation and should be separated from the existing footings by a distance greater than one footing width (new or existing footing, whichever is widest). As an alternative, new footings which are structurally connected to the existing footing and designed as a composite footing per the recommendations above are also acceptable.
10. A representative of the project geotechnical engineer should observe all footing excavations and backfill phases prior to the placement of concrete formwork.

11. Backfill around foundation stem walls should be placed in lifts of equal thickness alternating between the exterior and interior of the foundation to prevent a net lateral soil loading for which the walls are not designed.

5.3 Floor Slabs and Exterior Flatwork

12. For normally loaded, slab-on-grade construction, the native sands should be smoothed and compacted to the requirements of Item 2 prior to concrete placement. The use of a separate gravel based cushion course beneath slab-on-grade construction is not required due to the availability of native well-graded sand containing minimal fines. All foundation backfill or additional fill required to reach bottom of slab elevation should be placed and compacted per our recommendations.

13. *Geotechnically*, an underslab vapor barrier is not required for this project. A vapor barrier is normally used to limit the migration of soil gas and moisture into occupied spaces through floor slabs. The need for a vapor barrier should be determined by the architect and/or structural engineer based on interior improvements and/or moisture and gas control requirements.

5.4 Pavements & Gravel Access Roads

14. The following roadway sections or an approved equivalent section should be selected in accordance with the discussions in the Engineering Analysis.

<table>
<thead>
<tr>
<th>Pavement Component</th>
<th>Asphalt Pavement</th>
<th>Gravel Surfaced Access Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalitic Concrete Pavement</td>
<td>3”</td>
<td>------</td>
</tr>
<tr>
<td>Crushed Base Course</td>
<td>6”</td>
<td>8”</td>
</tr>
<tr>
<td>Total</td>
<td>9”</td>
<td>8”</td>
</tr>
</tbody>
</table>

15. Gradations for the crushed base courses shall conform to Section 02235 of the Montana Public Works Standard Specifications (MPWSS).
16. Where the existing grades will be raised more than the thickness of the pavement section, all fill should be placed, compacted and meet the general requirements given in Item 2 above.

17. The asphaltic cement should be a Performance Graded (PG) binder having a 58-28 grade in accordance with AASHTO MP1.

5.5 Continuing Services

Three additional elements of geotechnical engineering service are important to the successful completion of this project.

18. Consultation between the geotechnical engineer and the design professionals during the design phases is highly recommended. This is important to ensure that the intentions of our recommendations are incorporated into the design, and that any changes in the design concept consider the geotechnical limitations dictated by the on-site subsurface soil and ground water conditions.

19. Observation, monitoring, and testing during construction is required to document the successful completion of all earthwork and foundation phases. A geotechnical engineer from our firm should observe the excavation, earthwork, and foundation phases of the work to determine that subsurface conditions are compatible with those used in the analysis and design.

20. During site grading, placement of all fill and backfill should be observed and tested to confirm that the specified density has been achieved. We recommend that the Owner maintain control of the construction quality control by retaining the services of an accredited/certified construction materials testing laboratory. We are available to provide construction inspection services as well as materials testing of compacted soils and the placement of Portland cement concrete and asphalt. In the absence of project specific testing frequencies, TD&H recommends the following minimum testing frequencies by used:

Compaction Testing

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beneath Column Footings</td>
<td>1 Test per Footing per Lift</td>
</tr>
<tr>
<td>Beneath Wall Footings</td>
<td>1 Test per 25 LF of Wall per Lift</td>
</tr>
<tr>
<td>Beneath Slabs</td>
<td>1 Test per 600 SF per Lift</td>
</tr>
<tr>
<td>Foundation Backfill</td>
<td>1 Test per 50 LF of Wall per Lift</td>
</tr>
</tbody>
</table>
Parking Lot & Access Roads
1 Test per 1,000 SF per Lift

\[\text{LF = Lineal Feet} \quad \text{SF = Square Feet} \]

Concrete Testing

Structural Concrete\(^\dagger\)
1 Test per 50 CY per Day

Non-Structural Concrete
1 Test per Day

\(^\dagger\) Structural concrete includes all footings, stem walls, slabs, and other load bearing elements

\[\text{CY = Cubic Yards} \]
6.0 SUMMARY OF FIELD AND LABORATORY STUDIES

6.1 Field Explorations

The field exploration program was conducted on August 5, 2015. A total of four borings were drilled to depths ranging from 16.2 to 21.4 feet at the locations shown on Figure 1 to observe subsurface soil and ground water conditions. The borings were advanced through the subsurface soils using a truck-mounted Mobile B-59 drill rig equipped with 6-inch hollowstem augers. The subsurface exploration and sampling methods used are indicated on the attached boring logs. The borings were logged by Mr. Kyle Scarr, PE of TD&H Engineering. The location and elevation of the borings were determined by TD&H survey personnel during an on-site topographic survey.

Samples of the subsurface materials were taken using 1¾-inch I.D. split spoon samplers. The samplers were driven 18 inches, when possible, into the various strata using a 140-pound drop hammer falling 30 inches onto the drill rods. For each sample, the number of blows required to advance the sampler each successive six-inch increment was recorded, and the total number of blows required to advance the sampler the final 12 inches is termed the penetration resistance (“N-value”). This test is known as the Standard Penetration Test (SPT) described by ASTM D1586. When the sampler is driven more than 18 inches, the number of blows required to advance the sampler the second and third six-inch increments are used to determine the N-value. Penetration resistance values indicate the relative density of granular soils and the relative consistency of fine-grained soils. Logs of all soil borings, which include soil descriptions, sample depths, and penetration resistance values, are presented on the Figures 2 though 5.

No evidence of ground water was encountered. Drilling tools appeared dry, free water was not observed on cuttings or soil samples, and the sound created by dropping rocks into the hole did not indicate the presence of water.

6.2 Laboratory Testing

Samples obtained during the field exploration were returned to our materials laboratory where they were observed and visually classified in general accordance with ASTM D2487, which is based on the Unified Soil Classification System. Representative samples were selected for testing to determine the engineering and physical properties of the soils in general accordance with ASTM or other approved procedures.
<table>
<thead>
<tr>
<th>Tests Conducted:</th>
<th>To determine:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Moisture Content</td>
<td>Representative moisture content of soil at the time of sampling.</td>
</tr>
<tr>
<td>Grain-Size Distribution</td>
<td>Particle size distribution of soil constituents describing the percentages of clay/silt, sand and gravel.</td>
</tr>
</tbody>
</table>

The laboratory testing program for this project consisted of 23 moisture-visual analyses and 4 sieve (grain-size distribution) analyses. The results of the water content analyses are presented on the boring logs, Figures 2 through 5. The grain-size distribution curves are presented on Figures 6 and 7.
7.0 LIMITATIONS

This report has been prepared in accordance with generally accepted geotechnical engineering practices in this area for use by the client for design purposes. The findings, analyses, and recommendations contained in this report reflect our professional opinion regarding potential impacts the subsurface conditions may have on the proposed project and are based on site conditions encountered. Our analysis assumes that the results of the exploratory borings are representative of the subsurface conditions throughout the site, that is, that the subsurface conditions everywhere are not significantly different from those disclosed by the subsurface study. Unanticipated soil conditions are commonly encountered and cannot be fully determined by a limited number of soil borings and laboratory analyses. Such unexpected conditions frequently require that some additional expenditures be made to obtain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.

The recommendations contained within this report are based on the subsurface conditions observed in the borings and are subject to change pending observation of the actual subsurface conditions encountered during construction. TD&H cannot assume responsibility or liability for the recommendations provided if we are not provided the opportunity to perform limited construction inspection and confirm the engineering assumptions made during our analysis. A representative of TD&H should observe all construction activities associated with subgrade preparation, foundations, and other geotechnical aspects of the project to ensure the conditions encountered are consistent with our assumptions. Unforeseen conditions or undisclosed changes to the project parameters or site conditions may warrant modification to the project recommendations.

Long delays between the geotechnical investigation and the start of construction increase the potential for changes to the site and subsurface conditions which could impact the applicability of the recommendations provided. If site conditions have changed because of natural causes or construction operations at or adjacent to the site, this report should be reviewed by TD&H to determine the applicability of the conclusions and recommendations provide considering the time lapse or changed conditions.

Misinterpretation of the geotechnical information by other design team members is possible and can result in costly issues during construction and with the final product. We strongly advise that TD&H review those portions of the plans and specifications which pertain to earthwork and foundations to determine if they are consistent with our recommendations and to suggest necessary modifications as warranted. In addition, TD&H should be involved throughout the construction process to observe construction, particularly the placement and compaction of all fill, preparation of all foundations, and all other geotechnical aspects. Retaining the geotechnical engineer who prepared your geotechnical
report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

This report was prepared for the exclusive use of the owner and architect and/or engineer in the design of the subject facility. It should be made available to prospective contractors and/or the contractor for information on factual data only and not as a warranty of subsurface conditions such as those interpreted from the boring logs and presented in discussions of subsurface conditions included in this report.

Prepared by:
Craig Nadeau, PE
Geotechnical Dept. Manager

Reviewed by:
Kyle Scarr, PE
Sr. Geotechnical Engineer
SURFACE: Graveled Surface Access Drive
APPROXIMATE SURFACE ELEVATION: 6662.5 FEET

SOIL DESCRIPTION

Silty SAND, dense, dry, brown, pond surfacing, trace gravel

Well-graded SAND, medium dense, dark brown, dry to slightly moist with depth, contains varying amounts of silt and gravel

- Some oxidation observed at 10.0' - 11.0'

Logged by: Kyle Scarr, P.E. (8/5/15)
Drilled by: Boland Drilling using a Foremost 59

Legends:

\[\text{SPT blows per foot} \]
\[\text{Field Moisture content} \]
\[\text{Groundwater Level} \]
\[\text{Grab/composite sample} \]
\[1-3/8-inch I.D. split spoon \]
\[2-1/2-inch I.D. split spoon \]
\[2-1/2-inch I.D. ring sampler \]
\[3-inch I.D. thin-walled sampler \]
\[\text{No sample recovery} \]

Note: The stratification lines represent approximate boundaries between soil types. Actual boundaries may be gradual or transitional.
SURFACE: Native grasses, play field
APPROXIMATE SURFACE ELEVATION: 6662.9 FEET

SOIL DESCRIPTION

GRAPHIC LOG

<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>PENETRATION RESISTANCE/MOISTURE CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>—</td>
</tr>
</tbody>
</table>

Silty SAND, medium dense, dry, brown, some grass and weeds

Well-graded SAND, medium dense, dark brown, dry to slightly moist with depth, contains varying amounts of silt and gravel

Logged by: Kyle Scarr, P.E. (8/5/15)
Drilled by: Boland Drilling using a Foremost 59

Note: The stratification lines represent approximate boundaries between soil types. Actual boundaries may be gradual or transitional.

Log of Soil Boring B-2
West Yellowstone School Addition
West Yellowstone, Montana

AUGUST 2015
B15-075

THOMAS, DEAN & HOSKINS, INC.
ENGINEERING CONSULTANTS
SURFACE: Play area, sand box
APPROXIMATE SURFACE ELEVATION: 6663.0 FEET

SOIL DESCRIPTION

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play area, Well-graded SAND, loose, dry, topsoil, clay, old root</td>
<td>0.7</td>
</tr>
<tr>
<td>Topsoil, LEAN CLAY, old roots and organics</td>
<td>1.5</td>
</tr>
<tr>
<td>Well-graded SAND, loose to medium dense, dark brown, dry to slightly moist with depth, contains varying amounts of silt and gravel</td>
<td></td>
</tr>
</tbody>
</table>

Ground Water Not Encountered During Drilling

Bottom of boring

Logged by: Kyle Scarr, P.E. (8/5/15)
Drilled by: Boland Drilling using a Foremost 59

Note: The stratification lines represent approximate boundaries between soil types. Actual boundaries may be gradual or transitional.
Log of Soil Boring B-4

Approximate Surface Elevation: 6662.5 feet

Silty SAND, loose, dry, brown

Well-graded SAND, medium dense, dark brown, dry to slightly moist with depth, contains varying amounts of silt and gravel

Logged by: Kyle Scarr, P.E. (8/5/15)
Drilled by: Boland Drilling using a Foremost 59

Bottom of boring

LEGEND

- SPT blows per foot
- Field Moisture content
- Groundwater level
- Grab/composite sample
- 1-3/8-inch I.D. split spoon
- 2-1/2-inch I.D. split spoon
- 2-1/2-inch I.D. ring sampler
- 3-inch I.D. thin-walled sampler
- No sample recovery

Atterberg Limits

Plastic Limit

In-Situ Water Content

Liquid Limit

Note: The stratification lines represent approximate boundaries between soil types. Actual boundaries may be gradual or transitional.

Log of Soil Boring B-4
West Yellowstone School Addition
West Yellowstone, Montana

AUGUST 2015
B15-075

THOMAS, DEAN & HOSKINS, INC.
ENGINEERING CONSULTANTS

Figure No. 5
Sheet 1 of 1

J:\2015\B15-075 West Yellowstone Schools Addition\GEOCHEM-15-075 BH4.dwg, 8/25/2015 3:28:05 PM, KLS
Particle Size Distribution Report

Material Description
- ○ Well-Graded SAND with Silt
- □ Well-Graded SAND with Gravel

Remarks
- ○ Location: B-1 Depth: 5.0 - 6.2 ft Sample Number: A-11674
- □ Location: B-2 Depth: 2.5 - 3.6 ft Sample Number: A-11679

SIEVE PERCENT FINER

<table>
<thead>
<tr>
<th>SIEVE inches size</th>
<th>1”</th>
<th>3/4”</th>
<th>1/2”</th>
<th>3/8”</th>
<th>#4</th>
<th>#10</th>
<th>#20</th>
<th>#40</th>
<th>#60</th>
<th>#80</th>
<th>#100</th>
<th>#200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>100.0</td>
<td>99.6</td>
<td>100.0</td>
<td>99.6</td>
<td>94.5</td>
<td>76.2</td>
<td>48.6</td>
<td>26.9</td>
<td>14.0</td>
<td>10.1</td>
<td>8.1</td>
<td>5.0</td>
</tr>
<tr>
<td>□</td>
<td>97.2</td>
<td>96.4</td>
<td>96.4</td>
<td>94.7</td>
<td>84.9</td>
<td>58.8</td>
<td>33.9</td>
<td>20.3</td>
<td>11.3</td>
<td>8.5</td>
<td>7.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

GRAIN SIZE

- D₆₀: 1.1947
- D₉₀: 0.4724
- D₁₀: 0.1791

COEFFICIENTS

- C_C: 1.04
- C_U: 6.67

Location

- Location: B-1 Depth: 5.0 - 6.2 ft Sample Number: A-11674
- Location: B-2 Depth: 2.5 - 3.6 ft Sample Number: A-11679

Client

JGA Architects

Project

West Yellowstone School Addition

Project No.

B15-075

Figure

6
Particle Size Distribution Report

Material Description
- Well-Graded SAND
- Well-Graded SAND with Silt and Gravel

Remarks:
- Report No. A-11687-206
- Report No. A-11691-206

Client: JGA Architects
Project: West Yellowstone School Addition
Project No.: B15-075

Sample Numbers:
- A-11687
- A-11691
STANDARD PENETRATION TEST (ASTM D1586)

<table>
<thead>
<tr>
<th>Granular, Noncohesive (Gravels, Sands, & Silts)</th>
<th>Standard Penetration Test (blows/foot)</th>
<th>Fine-Grained, Cohesive (Clays)</th>
<th>Standard Penetration Test (blows/foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0-4</td>
<td>Very Soft</td>
<td>0-2</td>
</tr>
<tr>
<td>Loose</td>
<td>5-10</td>
<td>Soft</td>
<td>3-4</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>11-30</td>
<td>Firm</td>
<td>5-8</td>
</tr>
<tr>
<td>Dense</td>
<td>31-50</td>
<td>Stiff</td>
<td>9-15</td>
</tr>
<tr>
<td>Very Dense</td>
<td>+50</td>
<td>Very Stiff</td>
<td>15-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard</td>
<td>+30</td>
</tr>
</tbody>
</table>

* Based on Sampler-Hammer Ratio of 8.929 E-06 ft/lbf and 4.185 E-05 ft^2/lbf for granular and cohesive soils, respectively (Terzaghi)

PARTICLE SIZE RANGE

<table>
<thead>
<tr>
<th>Sieve Openings (inches)</th>
<th>Standard Sieve Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12”</td>
<td>3”</td>
</tr>
<tr>
<td>3/4”</td>
<td>No.4</td>
</tr>
<tr>
<td>No.10</td>
<td>No.40</td>
</tr>
<tr>
<td>No.200</td>
<td><No.200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOULDERS</th>
<th>COBBLES</th>
<th>GRAVELS</th>
<th>SANDS</th>
<th>SILTS & CLAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>Fine</td>
<td>Coarse</td>
<td>Medium</td>
<td>Fine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Distinguished By Atterberg Limits)</td>
</tr>
</tbody>
</table>

PLASTICITY CHART

For classification of fine-grained soils and the fine-grained fraction of coarse-grained soils.

Equation of "A"-line
Horizontal at PI = 4 to LL = 25.5, then PI = 0.73 (LL-20)

Equation of "U"-line
Vertical at LL = 16 to PI = 7, then PI = 0.9 (LL-8)

GW - Well-graded GRAVEL
GP - Poorly-graded GRAVEL
GM - Silty GRAVEL
GC - Clayey GRAVEL
SW - Well-graded SAND
SP - Poorly-graded SAND
SM - Silty SAND
SC - Clayey SAND
CL - Lean CLAY
ML - SILT
OL - Organic SILT/CLAY
CH - Fat CLAY
MH - Elastic SILT
OH - Organic SILT/CLAY