

BEN STEELE MIDDLE SCHOOL Billings, MT

100% Construction Document Specifications Volume 2 of 3

A&E Project #13048.20 Integrus Project #21438.00

PROJECT DIRECTORY – DESIGN TEAM

Integrus Architecture

117 South Main Street, Suite 100 Seattle, WA 98104 206.628.3137 Contact: Sam Schafer sschafer@integrusarch.com

Civil / Landscape

Sanderson Stewart 1300 N Transtech Way Billings, MT 59102 406.656.5255 Contact: Pat Davies drandall@sandersonstewart.com

Technology

Access Consulting 265 W Front Street Missoula, MT 59802 406.327.0629 Contact: Pete Weber paul@access-consulting.net

A&E Architects

608 N 29th St Billings, MT 59101 406.248.2633 Contact: Dusty Eaton deaton@aearchitects.com

Structural

Krivonen & Associates 725 Grand Ave Billings, MT 59101 406.259.1184 Contact: Matt Krivonen mmkrivonen@bresnan.net

Food Service

H-C Design & Consulting 614 Ferguson Ave, Ste 1 Billings, MT 59718 406.522.7700 Contact: Michael Miles michael@h-cdesign.com

Owner's Representative

Hulteng CM, Inc. 6417 Trade Center Ave Billings, MT 59101 406.655.1116 Contact: Shane Swandal sswandal@hultenginc.com

MEP

Associated Construction Engineering (ACE) 2040 Harnish Blvd. Billings, MT 59101 406.245.0136 Contact: Todd Meling, Jeff Kraft toddm@acemt.com, jeffk@acemt.com

Acoustics

Big Sky Acoustics, LLC PO Box 27 Helena, MT 59624 406.457.0407 Contact: Sean Connolly sean@bigskyacoustics.com

TABLE OF CONTENTS

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS – TO BE ISSUED BY ADDENDUM

VOLUME 1 – DIVISIONS 1-14

DIVISION 1 - GENERAL REQUIREMENTS

- 01 10 00 SUMMARY
- 01 23 00 ALTERNATES
- 01 25 00 SUBSTITUTION PROCEDURES
- 01 25 00 A SUBSTITUTION REQUEST FORM
- 01 26 00 CONTRACT MODIFICATION PROCEDURES
- 01 26 00 A G701 CHANGE ORDER
- 01 26 00 B G709 WORK CHANGE PROPOSAL
- 01 26 00 C G710 ARCHITECTURAL SUPPLEMENTAL INSTRUCTIONS
- 01 26 00 D G714 CONSTRUCTION CHANGE DIRECTIVE
- 01 29 00 PAYMENT PROCEDURES
- 01 31 00 PROJECT MANAGEMENT AND COORDINATION
- 01 31 00 A G716 REQUEST FOR INFORMATION
- 01 32 00 CONSTRUCTION PROGRESS DOCUMENTATION
- 01 33 00 SUBMITTAL PROCEDURES
- 01 33 00 A C106 DIGITAL DATA AGREEMENT
- 01 33 00 B SUBMITTAL TRANSMITTAL
- 01 40 00 QUALITY REQUIREMENTS
- 01 42 00 REFERENCES
- 01 50 00 TEMPORARY FACILITIES AND CONTROLS
- 01 60 00 PRODUCT REQUIREMENTS
- 01 73 00 EXECUTION
- 01 74 19 CONSTRUCTION WASTE MANAGEMENT & DISPOSAL
- 01 77 00 CLOSEOUT PROCEDURES
- 01 78 23 OPERATION AND MAINTENANCE DATA
- 01 78 39 PROJECT RECORD DOCUMENTS
- 01 79 00 DEMONSTRATION AND TRAINING

DIVISION 03 – CONCRETE

- 03 30 00 CAST-IN-PLACE CONCRETE
- 03 35 18 POLISHED CONCRETE (Alternate)

DIVISION 04 – MASONRY

- 04 22 00 CONCRETE UNIT MASONRY
- 04 26 13 MASONRY VENEER

DIVISION 05 – METALS

- 05 12 00 STRUCTURAL STEEL FRAMING
- 05 21 00 STEEL JOIST FRAMING
- 05 31 00 STEEL DECKING
- 05 40 00 COLD-FORMED METAL FRAMING

05 50 00METAL FABRICATIONS05 51 13METAL PAN STAIRS

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES

- 06 10 53 MISCELLANEOUS ROUGH CARPENTRY
- 06 16 00 SHEATHING
- 06 20 00 FINISH CARPENTRY
- 06 41 16 ARCHITECTURAL DECORATIVE LAMINATE CASEWORK
- 06 82 00 GLASS-FIBER REINFORCED PLASTIC (FRP)

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

- 07 11 13 BITUMINOUS DAMPPROOFING
- 07 13 26 SELF-ADHERING SHEET WATERPROOFING
- 07 19 10 WATER REPELLANTS / ANTI GRAFFITI COATINGS
- 07 21 13 BOARD INSULATION
- 07 21 16 BLANKET INSULATION
- 07 26 00 VAPOR RETARDERS
- 07 27 15 NON-BITUMINOUS SELF-ADHERING SHEET AIR BARRIERS
- 07 42 10 FIBER CEMENT PANELS
- 07 42 13 METAL SIDING
- 07 54 19 POLYVINYL CHLORIDE (PVC) ROOFING FULLY ADHERED
- 07 54 23 THERMOPLASTIC POLYOLEFIN (TPO) ROOFING (Alternate)
- 07 62 00 SHEET METAL FLASHING AND TRIM
- 07 72 33 ROOF HATCHES
- 07 84 00 FIRESTOPPING
- 07 92 00 JOINT SEALANTS
- 07 92 19 ACOUSTICAL JOINT SEALANTS
- 07 95 00 EXPANSION CONTROL

DIVISION 08 – OPENINGS

- 08 12 14 STANDARD STEEL FRAMES
- 08 13 14 STANDARD STEEL DOORS
- 08 14 16 FLUSH WOOD DOORS
- 08 31 13 ACCESS DOORS AND FRAMES
- 08 33 23 OVERHEAD COILING DOORS
- 08 33 26 OVERHEAD COILING GRILLES
- 08 35 13 FOLDING FIRE DOORS
- 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 08 71 00 DOOR HARDWARE
- 08 80 00 GLAZING

DIVISION 09 – FINISHES

- 09 21 16 GYPSUM BOARD ASSEMBLIES
- 09 22 16 NON-STRUCTURAL METAL FRAMING
- 09 30 00 TILING
- 09 51 13 ACOUSTICAL TILE CEILINGS
- 09 64 13 WOOD FLOORING

- 09 64 66 WOOD ATHLETIC FLOORING
- 09 65 00 RESILIENT FLOORING VCT
- 09 65 10 RESILIENT FLOORING LVT (Alternate)
- 09 68 13 TILE CARPETING
- 09 72 00 SOUND ABSORBING AND DIFFUSING PANELS
- 09 84 20 TACKABLE WALL PANELS
- 09 90 00 PAINTING AND COATING

DIVISION 10 – SPECIALTIES

- 10 11 00 VISUAL DISPLAY SURFACES
- 10 11 41 SLAT PANEL SYSTEM
- 10 14 00 SIGNAGE
- 10 14 63 ELECTRONIC MESSAGE SIGNAGE
- 10 21 13 TOILET COMPARTMENTS
- 10 21 23 CUBICLE CURTAINS
- 10 26 00 WALL PROTECTION
- 10 28 00 TOILET, BATH AND CUSTODIAL ACCESSORIES
- 10 44 00 FIRE PROTECTION SPECIALTIES
- 10 51 13 METAL LOCKERS
- 10 67 20 METAL STORAGE SHELVING
- 10 75 00 FLAGPOLES

DIVISION 11 – EQUIPMENT

- 11 31 00 RESIDENTIAL APPLIANCES
- 11 40 00 FOODSERVICE EQUIPMENT
- 11 47 50 SCIENCE EQUIPMENT
- 11 51 23 LIBRARY SHELVING
- 11 52 13 PROJECTION SCREENS
- 11 52 16 VIDEO PROJECTORS
- 11 66 23 ATHLETIC EQUIPMENT
- 11 66 43 LED SCOREBOARDS AND SHOT TIME CLOCK

DIVISION 12 – FURNISHINGS

- 12 21 00 WINDOW BLINDS
- 12 24 13 ROLLER SHADES
- 12 31 00 MANUFACTURED METAL SHELVING
- 12 66 13 TELESCOPING BLEACHERS

DIVISION 14 – CONVEYING EQUIPMENT

14 24 00 HYDRAULIC ELEVATORS

VOLUME 2 - DIVISIONS 21 - 23

DIVISION 21 – FIRE SUPPRESSION

21 00 00	FIRE SUPPRESSION GENERAL REQUIREMENTS
21 05 00	COMMON WORK RESULTS FOR FIRE SUPPRESSION
21 05 17	SLEEVES AND SLEEVE SEALS FOR FIRE SUPPRESSION PIPING
21 05 18	ESCUTCHEONS FOR FIRE SUPPRESSION PIPING
21 05 23	GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING
21 05 53	IDENTIFICATION FOR FIRE SUPPRESSION PIPING AND EQUIPMENT
21 11 00	FACILITY FIRE SUPPRESSION WATER SERVICE PIPING
21 13 13	WET PIPE SPRINKLER SYSTEMS
21 13 16	DRY-PIPE SPRINKLER SYSTEMS

DIVISION 22 – PLUMBING

22 05 18 22 05 19 22 05 23.12 22 05 23.14 22 05 23.15 22 05 29 22 05 48.13 22 05 53 22 07 19 22 11 13 22 11 16 22 11 19 22 13 13 22 13 16 22 13 19 22 13 23 22 14 13 22 14 23 22 15 13 22 15 19	ESCUTCHEONS FOR PLUMBING PIPING METERS AND GAGES FOR PLUMBING PIPING BALL VALVES FOR PLUMBING PIPING CHECK VALVES FOR PLUMBING PIPING GATE VALVES FOR PLUMBING PIPING HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT PLUMBING PIPING INSULATION FACILITY WATER DISTRIBUTION PIPING DOMESTIC WATER PIPING SPECIALTIES DOMESTIC WATER PIPING SPECIALTIES DOMESTIC WATER PUMPS FACILITY SANITARY SEWERS SANITARY WASTE AND VENT PIPING SANITARY WASTE INTERCEPTORS FACILITY STORM DRAINAGE PIPING STORM DRAINAGE PIPING SPECIALTIES GENERAL-SERVICE COMPRESSED-AIR PIPING GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS
22 11 10	DOMESTIC WATER PIPING
22 11 19	DUMESTIC WATER PIPING SPECIALTIES
22 11 23	
22 13 13	
22 13 10	SANITART WASTE AND VENT FIFING
22 13 13	SANITARY WASTE INTERCEPTORS
22 14 13	FACILITY STORM DRAINAGE PIPING
22 14 23	STORM DRAINAGE PIPING SPECIALTIES
22 15 13	GENERAL-SERVICE COMPRESSED-AIR PIPING
22 15 19	GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS
22 34 00	FUEL-FIRED DOMESTIC WATER HEATERS AND STORAGE TANKS
22 42 13.13	
22 42 13.16	
22 42 10.13	COMMERCIAL LAVATORIES
22 42 10.10	COMMERCIAL SHOWERS
22 45 00	EMERGENCY PLUMBING FIXTURES
22 47 16	PRESSURE WATER COOLERS

DIVISION 23 – HEATING, VENTILATING AND AIR-CONDITIONING

- 23 00 00 HVAC GENERAL REQUIREMENTS
- 23 05 00 COMMON WORK RESULTS FOR HVAC
- 23 05 13 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
- 23 05 16 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

23 05 17	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
23 05 18	ESCUTCHEONS FOR HVAC PIPING
23 05 19	METERS AND GAGES FOR HVAC PIPING
23 05 23.11	GLOBE VALVES FOR HVAC PIPING
23 05 23.12	BALL VALVES FOR HVAC PIPING
23 05 23.14	CHECK VALVES FOR HVAC PIPING
23 05 23.15	GATE VALVES FOR HVAC PIPING
23 05 29	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
23 05 53	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
23 05 93	TESTING, ADJUSTING, AND BALANCING FOR HVAC
23 07 13	DUCT INSULATION
23 07 19	HVAC PIPING INSULATION
23 08 00	COMMISSIONING OF HVAC SYSTEMS
23 09 23	DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC
23 09 23.11	CONTROL VALVES
23 09 23.12	CONTROL DAMPERS
23 09 23.14	FLOW INSTRUMENTS
23 09 23.16	GAS INSTRUMENTS
23 09 23.23	PRESSURE INSTRUMENTS
23 09 23.27	TEMPERATURE INSTRUMENTS
23 09 93.11	SEQUENCE OF OPERATIONS FOR HVAC DDC
23 11 23	FACILITY NATURAL-GAS PIPING
23 21 13	HYDRONIC PIPING
23 21 13.13	UNDERGROUND HYDRONIC PIPING
23 21 16	HYDRONIC PIPING SPECIALTIES
23 21 23	HYDRONIC PUMPS
23 25 00	HVAC WATER TREATMENT
23 31 13	METAL DUCTS
23 33 00	AIR DUCT ACCESSORIES
23 34 16	
23 34 23	HVAC POWER VENTILATORS
23 36 00	
23 37 13	DIFFUSERS, REGISTERS, AND GRILLES
23 37 23	
23 38 13	
23 31 00	CONDENSING DOILEDS
23 32 10	
23 37 00	
23 04 23	
23 73 13 13	
23 73 13.13	PACKAGED OUTDOOR CENTRAL STATION AIR-HANDLING UNITS
23 74 73 13	PACKAGED DIRECT-FIRED INDOOR HEATING-ONLY MAKEUP-AIR UNITS
23 82 33	CONVECTORS
23 82 39 16	PROPELLER UNIT HEATERS
23 85 00	WOOD SHOP EXHAUST COLLECTOR
23 85 23	DUST COLLECTOR DUCTS
-	

VOLUME 3 - DIVISIONS 26 - 32

DIVISION 26 – ELECTRICAL

- 26 00 00 ELECTRICAL GENERAL REQUIREMENTS
- 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 05 29 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS
- 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY
- 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS
- 26 22 00 LOW-VOLTAGE TRANSFORMERS
- 26 24 13 SWITCHBOARDS
- 26 24 16 PANELBOARDS
- 26 27 13 ELECTRICITY METERING
- 26 27 26 WIRING DEVICES
- 26 28 13 FUSES
- 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 26 51 00 INTERIOR LIGHTING
- 26 56 00 EXTERIOR LIGHTING

DIVISION 27 – COMMUNICATIONS

- 27 00 00 COMMUNICATIONS PROJECT OVERVIEW
- 27 01 00 BASIC TELECOMMUNICATIONS REQUIREMENTS
- 27 12 00 PATHWAYS, FITTINGS, AND BOXES
- 27 13 00 OPTICAL FIBER BACKBONE CABLING
- 27 16 00 OPTICAL FIBER HORIZONTAL CABLING
- 27 51 23 CLOCK AND PUBLIC ADDRESS SYSTEM

DIVISION 28 – ELECTRONIC SAFETY & SECURITY

28 31 11 DIGITAL, ADDRESSABLE FIRE ALARM SYSTEM

DIVISION 31 - EARTHWORK

31 20 00 EARTHWORK

DIVISION 32 – EXTERIOR IMPROVEMENTS

- 32 22 50 IRRIGATION TRENCH AND BACKFILL
- 32 70 50 CHAIN LINK FENCING AND GATES
- 32 70 80 ALUMINUM BED EDGING
- 32 76 10 IRRIGATION SYSTEM
- 32 76 30 FOOTBALL/TRACK/SOFTBALL SCORE BOARDS
- 32 82 00 LAWNS COMPREHENSIVE
- 32 84 00 TREES, SHRUBS, AND GROUNDCOVERS
- LANDSCAPE EQUIPMENT FOR REFERENCE ONLY

APPENDIX - GEOTECHNICAL REPORT

END TABLE OF CONTENTS 00 01 10

SECTION 21 00 00 - FIRE-SUPPRESSION SYSTEMS GENERAL REQUIREMENTS

PART 1 - GENERAL

SCOPE

- Furnish A. and install an automatic sprinkler system protect to as indicated herein and as shown on the Drawings. Connect system to a water supply of sufficient pressure to ensure full and sustained water discharge immediately from sprinkler heads when opened by fire at rated heat temperatures. Water supply shall conform to NFPA water supply requirements with considerations given to the reliability of the public water supply, taking into account probable minimum pressure conditions. The Contractor shall verify site water pressure before submitting shop drawings.
- B. All portions of the systems shall be installed in accordance with the drawings, details, and specifications and as required by jurisdictional authorities and codes. Jurisdictional authorities and codes shall take precedence over plans, details and specifications in the event of a dispute between the requirements of contract documents and jurisdictional authorities or codes.
- C. The position is taken that the Owner is entitled to a project which meets or exceeds the minimum requirements of nationally recognized fire protection standards. All efforts and installations shall be directed toward this end. All deficiencies as noted by fire rating bureaus, insurance service offices or jurisdictional authorities shall be corrected. No extra charges will be allowed on this account.
- D. The intent of these specifications is to describe the complete systems to be installed, including minor details of work or materials not specifically mentioned or shown, but necessary for the successful operation and completion of the installation.
- E. Work to be performed under this section shall include, but not be limited to the following:
 - 1. Excavation, backfill and compaction for the fire system supply.
 - 2. Automatic fire sprinkler systems.
 - a. Wet pipe flow switch system.
 - 1) Pipe and fittings.
 - 2) Hangers and supports.
 - 3) Valves.
 - 4) Alarms.
 - 5) Flow Switches.
 - 6) Specialties.
 - b. Dry pipe system.
 - 1) Pipe and fittings.
 - 2) Hangers and supports.
 - 3) Valves.
 - 4) Alarms.
 - 5) Pressure & Tamper Switches.
 - 6) Specialties.

- F. The following areas shall be furnished with an automatic fire protection system of type or types as required:
 - 1. The entire new building
 - 2. All combustible canopies.

1.2 RELATED WORK

A. All work performed under this section of the specifications shall be subject to the requirements of both the General and Special Conditions and the Mechanical Specification.

1.3 REGULATORY AGENCIES

- A. The term jurisdictional authority used in this section of the specification shall include, as applicable, but not be limited to the following:
 - 1. Billings, MT Building Department and Fire Department.
 - 2. Montana State Fire Marshal.
 - 3. Insurance Services Office or Insuring Authority having jurisdiction.
 - 4. Owner.
- B. The design and installation of all systems of fire protection shall conform to all requirements of applicable codes and publications herein defined:
 - 1. International Building Code
 - 2. International Fire Code
 - 3. NFPA 13
 - 4. NFPA 10
 - 5. NFPA 17
 - 6. NFPA 101
 - 7. All State and local ordinances

1.4 SUBMITTALS

- A. The successful Contractor shall provide submittal data as required under other portions of this specification. Submittals shall conform to the instructions set forth in the General and Special Conditions of these specifications entitled Shop Drawings and Submittals.
- B. Submit shop drawings (floor plans detailed working drawings), showing dimensions, ducts, lights, or other items affecting the fire protection systems to jurisdictional agencies for review and approval, including all Authorities Having Jurisdiction (including, but not limited to the local or State Fire Marshall). All items identified in NFPA 13 for proper working drawings shall be complied with. The Architect or Engineer will reject all submittals not in compliance. Submit all necessary shop drawings to authorities having jurisdiction. Concurrently, six (6) sets shall be sent to the Architect for review. After approval from jurisdictional agencies have been returned to the Contractor, they shall be submitted to the Architect for final acceptance. These final acceptance sets shall have all agencies' stamps of review and acceptance. Where there is conflict between the Contract Drawings and/or Specifications, and the recommendations of the jurisdictional authorities, the conflict shall be brought to the attention of the Architect at least ten (10) days prior to bidding or be resolved at no cost to the Owner.

- C. Architect and Engineer's review will be for general location only. It will be the Contractor's responsibility to check his drawings for interference and to do shop fabrication from measurements taken at the job site.
- D. Work on the project shall not begin until plans have been reviewed by the Architect/Engineer.
- E. Eight (8) sets of catalog information shall be submitted for approval for all materials provided.
- F. Adequately bind each submittal package. Unbound submittals will be returned without review.
- G. The preparation of all shop drawings and hydraulic calculations shall be accomplished by a Registered Engineer, licensed in the State of Montana, if required by local authorities. At a minimum, work must be done by a NICET Level 3 technician.

1.5 JOB CONDITIONS

- A. The Contractor shall investigate the structural, mechanical, electrical, and finished conditions affecting the piping, and shall arrange the equipment accordingly; furnishing required fittings, offsets and accessories. Route fire protection piping to avoid interference with ductwork and drain piping. In the event it becomes necessary to make field changes in pipe locations due to building construction, the Contractor shall consult with the Architect before making any changes. Any such changes required shall be made without added cost to the Owner.
- B. The Contractor shall determine, and be responsible for, the proper locations and type of inserts for hangers, chases, sleeves, and other openings in the construction required for fire protection work, and shall obtain this information well in advance of the construction progress to avoid delay of the work.
- C. The drawings indicate approximate locations of sprinkler equipment. Contractor is responsible for final locations and routing.
- D. All fees and permits specifically required for fire protection work, not obtained by others as specified elsewhere shall be applied for and paid for by this Contractor.
- E. All systems of fire protection shall be installed by a licensed (for the location of installation) Fire Protection Contractor, fully experienced in fire protection installation as specified herein.
- F. Fire Protection Contractors may be required to provide in writing, specific information as to successfully completed projects and references to show cause as to why they should be considered acceptable to the Architect.

1.6 RECORD DRAWINGS

- A. One approved set of drawings shall be maintained on the job at all times.
- B. One reproducible set of As-Built drawings shall be provided to the Architect upon completion of the work.

1.7 OPERATION AND MAINTENANCE MANUALS

- A. Three (3) sets of operating and maintenance instructions shall be provided the Owner upon completion. Manuals shall include, as a minimum, the following:
 - 1. As-Built Drawings
 - 2. NFPA 25
 - 3. Catalog cut sheets of all materials installed
 - 4. Equipment maintenance manuals

1.8 TRAINING

A. The Fire Protection Contractor shall instruct the Owner in the operation of the systems. Instruction shall continue until the Owner is fully satisfied that he understands the operation of his system.

1.9 GUARANTEES AND WARRANTIES

- A. The Fire Protection Contractor shall guarantee to the Owner in writing, all equipment and workmanship for a period of one (1) year after the fire protection system has been placed in continuous service and has been accepted by all authorities having jurisdiction.
- B. The Fire Protection Contractor shall not be held responsible for improper or negligent maintenance by the Owner after operating and maintenance indoctrination has been given the Owner.

END OF SECTION 21 00 00

SECTION 21 05 00 - COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Mechanical sleeve seals.
 - 3. Sleeves.
 - 4. Escutcheons.
 - 5. Grout.
 - 6. Fire-suppression demolition.
 - 7. Concrete bases.
 - 8. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

- 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
- 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Fire-Suppression Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 21 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 21 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining CPVC Plastic Piping: ASTM F 493.

2.3 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.4 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.5 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.

2.6 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 21 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

- 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Through-Penetration Firestop Systems" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 21 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.

3.3 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete."

3.4 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor fire-suppression materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.5 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor firesuppression materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.6 GROUTING

- A. Mix and install grout for fire-suppression equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.

- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 21 05 00

SECTION 21 05 17 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Sleeve-seal systems in this article are used for piping penetrations in slabs-on-grade and below grade in exterior walls. These systems are available for NPS 1/2 to NPS 48 (DN 15 to DN 1200) piping.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.

- C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydrauliccement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 92 00 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 07 84 13 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: PVC-pipe sleeves.
 - b. Piping NPS 6 and Larger: PVC-pipe sleeves.

END OF SECTION 21 05 17

SECTION 21 05 18 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.

- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stampedsteel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
- h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
- j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chromeplated finish.
- k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 21 05 18

SECTION 21 05 23 - GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Iron butterfly valves with indicators.
 - 2. Check valves.
 - 3. Iron OS&Y gate valves.
 - 4. NRS gate valves.
 - 5. Indicator posts.
 - 6. Trim and drain valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:
 - 1. Main Level: HAMV Fire Main Equipment.
 - a. Level 1: HCBZ Indicator Posts, Gate Valve.
 - b. Level 1: HLOT Valves.
 - 1) Level 3: HLUG Ball Valves, System Control.
 - 2) Level 3: HLXS Butterfly Valves.
 - 3) Level 3: HMER Check Valves.
 - 4) Level 3: HMRZ Gate Valves.
 - 2. Main Level: VDGT Sprinkler System & Water Spray System Devices.
 - a. Level 1: VQGU Valves, Trim and Drain.
- B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:
 - 1. Automated Sprinkler Systems:
 - a. Indicator posts.
 - b. Valves.
 - 1) Gate valves.

- 2) Check valves.
 - a) Single check valves.
- 3) Miscellaneous valves.
- C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.
- D. ASME Compliance:
 - 1. ASME B16.1 for flanges on iron valves.
 - 2. ASME B1.20.1 for threads for threaded-end valves.
 - 3. ASME B31.9 for building services piping valves.
- E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.
- F. NFPA Compliance: Comply with NFPA 24 for valves.
- G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.
- H. Valve Sizes: Same as upstream piping unless otherwise indicated.
- I. Valve Actuator Types:
 - 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 - 2. Handwheel: For other than quarter-turn trim and drain valves.
 - 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 IRON BUTTERFLY VALVES WITH INDICATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - 2. Fivalco Inc.
 - 3. Globe Fire Sprinkler Corporation.
 - 4. Kennedy Valve Company; a division of McWane, Inc.
 - 5. NIBCO INC.
 - 6. Tyco Fire & Building Products LP.
 - 7. Victaulic Company.
 - 8. Zurn Industries, LLC.

B. Description:

- 1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
- 2. Minimum Pressure Rating: 175 psig.
- 3. Body Material: Cast or ductile iron.
- 4. Seat Material: EPDM.
- 5. Stem: Stainless steel.
- 6. Disc: Ductile iron.
- 7. Actuator: Worm gear or traveling nut.
- 8. Supervisory Switch: Internal or external.

9. Body Design: Grooved-end connections.

2.3 CHECK VALVES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - 2. Fire Protection Products, Inc.
 - 3. Globe Fire Sprinkler Corporation.
 - 4. Kennedy Valve Company; a division of McWane, Inc.
 - 5. Mueller Co.
 - 6. NIBCO INC.
 - 7. Reliable Automatic Sprinkler Co., Inc. (The).
 - 8. Tyco Fire & Building Products LP.
 - 9. Victaulic Company.
 - 10. Viking Corporation.
 - 11. Watts; a Watts Water Technologies company.
- B. Description:
 - 1. Standard: UL 312 and FM Global standard for swing check valves, Class Number 1210.
 - 2. Minimum Pressure Rating: 175 psiga.
 - 3. Type: Single swing check.
 - 4. Body Material: Cast iron, ductile iron, or bronze.
 - 5. Clapper: Bronze, ductile iron, or stainless steel.
 - 6. Clapper Seat: Brass, bronze, or stainless steel.
 - 7. Hinge Shaft: Bronze or stainless steel.
 - 8. Hinge Spring: Stainless steel.
 - 9. End Connections: Flanged, grooved, or threaded.
- 2.4 IRON OS&Y GATE VALVES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hammond Valve.
 - 2. Kennedy Valve Company; a division of McWane, Inc.
 - 3. Mueller Co.
 - 4. NIBCO INC.
 - 5. Victaulic Company.
 - 6. Watts; a Watts Water Technologies company.
 - 7. Zurn Industries, LLC.
 - B. Description:
 - 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Y- and NRS-type gate valves).
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body and Bonnet Material: Cast or ductile iron.
 - 4. Wedge: Cast or ductile iron, or bronze.
 - 5. Wedge Seat: Cast or ductile iron, or bronze.
 - 6. Stem: Brass or bronze.
 - 7. Packing: Non-asbestos PTFE.

- 8. Supervisory Switch: External.
- 9. End Connections: Flanged.
- 2.5 NRS GATE VALVES
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Cast Iron Pipe Company.
 - 2. Clow Valve Company; a subsidiary of McWane, Inc.
 - 3. Kennedy Valve Company; a division of McWane, Inc.
 - 4. Mueller Co.
 - 5. NIBCO INC.
 - 6. Victaulic Company.
 - 7. Zurn Industries, LLC.
 - B. Description:
 - 1. Standard: UL 262 and FM Global standard for fire-service water control valves (OS&Y- and NRS-type gate valves).
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body and Bonnet Material: Cast or ductile iron.
 - 4. Wedge: Cast or ductile iron.
 - 5. Wedge Seat: Cast or ductile iron, or bronze.
 - 6. Stem: Brass or bronze.
 - 7. Packing: Non-asbestos PTFE.
 - 8. Supervisory Switch: External.
 - 9. End Connections: Flanged.

2.6 INDICATOR POSTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Cast Iron Pipe Company.
 - 2. Clow Valve Company; a subsidiary of McWane, Inc.
 - 3. Kennedy Valve Company; a division of McWane, Inc.
 - 4. Mueller Co.
 - 5. NIBCO INC.

B. Description:

- 1. Standard: UL 789 and FM Global standard for indicator posts.
- 2. Type: Underground.
- 3. Base Barrel Material: PVC.
- 4. Extension Barrel: Cast or ductile iron.
- 5. Cap: Cast or ductile iron.
- 6. Operation: Wrench.

2.7 TRIM AND DRAIN VALVES

A. Angle Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fire Protection Products, Inc.
 - b. NIBCO INC.
 - c. United Brass Works, Inc.
- 2. Description:
 - a. Pressure Rating: 175 psig.
 - b. Body Material: Brass or bronze.
 - c. Ends: Threaded.
 - d. Stem: Bronze.
 - e. Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron, bronze, or aluminum.

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

- A. Comply with requirements in the following Sections for specific valve installation requirements and applications:
 - 1. Section 21 11 00 "Facility Fire-Suppression Water-Service Piping" for application of valves in fire-suppression water-service piping outside the building.
 - 2. Section 21 12 00 "Fire-Suppression Standpipes" for application of valves in fire-suppression standpipes.
 - 3. Section 21 13 13 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, firesuppression sprinkler systems.
 - 4. Section 21 13 16 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, firesuppression sprinkler systems.
- B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.
- E. Install valves in horizontal piping with stem at or above the pipe center.
- F. Install valves in position to allow full stem movement.
- G. Install valve tags. Comply with requirements in Section 21 05 53 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

- H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.
- I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 21 05 23

SECTION 21 05 53 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.

PART 2 - PRODUCTS

- 2.1 EQUIPMENT LABELS
 - A. Metal Labels for Equipment:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
 - 3. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 4. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 5. Fasteners: Stainless-steel rivets.

- 6. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.
 - 3. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 4. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 5. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 6. Fasteners: Stainless-steel rivets.
 - 7. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Brady Corporation.
 - 2. Brimar Industries, Inc.
 - 3. Carlton Industries, LP.
 - 4. Champion America.
 - 5. Craftmark Pipe Markers.
 - 6. emedco.
 - 7. LEM Products Inc.
 - 8. Marking Sevices Inc.
 - 9. National Marker Company.
 - 10. Seton Identification Products.
 - 11. Stranco, Inc.
- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, with predrilled holes for attachment hardware.
- C. Letter Color: White
- D. Background Color: Red
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- H. Fasteners: Stainless-steel rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 - 2. Brady Corporation.
 - 3. Brimar Industries, Inc.
 - 4. Carlton Industries, LP.
 - 5. Champion America.
 - 6. Craftmark Pipe Markers.
 - 7. emedco.
 - 8. Kolbi Pipe Marker Co.
 - 9. LEM Products Inc.
 - 10. Marking Sevices Inc.
 - 11. Seton Identification Products.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction.
- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to partially cover circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 LABEL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install or permanently fasten labels on each major item of mechanical equipment.
- D. Locate equipment labels where accessible and visible.
- E. Piping: Painting of piping is specified in Section 09 91 23 "Interior Painting."
- F. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit a view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.

END OF SECTION 21 05 53

SECTION 21 11 00 - FACILITY FIRE-SUPPRESSION WATER-SERVICE PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes fire-suppression water-service piping and related components outside the building and service entrance piping through wall or floor into the building and the following:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-suppression specialty valves.
- B. Utility-furnished products include water meters that are furnished to the site, ready for installation.
- C. Related Requirements:
 - 1. Section 21 11 19 "Fire-Department Connections" for exposed-, flush-, and yard-type, firedepartment connections.
 - 2. Section 21 12 00 "Fire-Suppression Standpipes" for fire-suppression standpipes inside the building.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.
- B. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Regulatory Requirements:
 - 1. Comply with requirements of utility company supplying the water. Include tapping of water mains and backflow prevention.
 - 2. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.
- B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- D. Comply with FM Global's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fireservice-main products.
- E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-suppression water-service piping.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, annealed temper.
- B. Hard Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L, water tube, drawn temper.
- C. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wrought-copper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
- D. Copper, Pressure-Seal Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Viega LLC.
 - 2. Standard: UL 213.
 - 3. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
 - 4. NPS 2-1/2 to NPS 4: Bronze fitting with stainless-steel grip ring and EPDM O-ring seal in each end.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
- F. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metalto-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
- B. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end.
- C. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end.
- D. Grooved-End, Ductile-Iron Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Corcoran Piping System Co.
 - c. Shurjoint Piping Products.
 - d. Smith-Cooper International.

- e. Star Pipe Products.
- f. Tyco Fire & Building Products LP.
- g. Venus Fire Protection Ltd.
- h. Victaulic Company.
- i. Viking Corporation.
- 2. Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
- 3. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
- E. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 1. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- F. Push-on-Joint, Ductile-Iron Fittings: AWWA C153, ductile-iron compact pattern.
 - 1. Gaskets: AWWA C111, rubber.
- G. Flanges: ASME B16.1, Class 125, cast iron.

2.3 PE PIPE AND FITTINGS

- A. PE, Fire-Service Pipe: FM Global approved, with minimum thickness equivalent to Class 150 and Class 200.
- B. Molded PE Fittings: FM Global approved; PE butt-fusion type, made to match PE pipe dimensions and class.
- 2.4 PVC PIPE AND FITTINGS
 - A. PVC Pipe: AWWA C900, Class 150 and Class 200, with bell end with gasket, and with spigot end.
 - B. PVC Fittings: AWWA C900, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

2.5 SPECIAL PIPE FITTINGS

- A. Ductile-Iron Flexible Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. EBAA Iron, Inc.
 - b. Romac Industries, Inc.
 - c. Star Pipe Products.
 - d. Zurn Industries, LLC.

- Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
- 3. Pressure Rating: 250 psig minimum.
- B. Ductile-Iron Deflection Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. EBAA Iron, Inc.
 - Description: Compound, ductile-iron coupling fitting with sleeve and one or two flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 - 3. Pressure Rating: 250 psig minimum.

2.6 JOINING MATERIALS

- A. Gaskets for Ferrous Piping and Copper-Alloy Tubing: ASME B16.21, asbestos free.
- B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series.

2.7 PIPING SPECIALTIES

- A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- B. Tubular-Sleeve Pipe Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser, Inc.
 - c. Ford Meter Box Company, Inc. (The).
 - d. JCM Industries, Inc.
 - e. Romac Industries, Inc.
 - f. Smith, Jay R. Mfg. Co.
 - g. Viking Johnson.
 - 2. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners, and with ends of same sizes as piping to be joined.
 - 3. Standard: AWWA C219.
 - 4. Center-Sleeve Material: Manufacturer's standard.
 - 5. Gasket Material: Natural or synthetic rubber.
 - 6. Pressure Rating: 200 psig minimum.
 - 7. Metal Component Finish: Corrosion-resistant coating or material.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.8 CORPORATION VALVES

- A. Caution: High-pressure valves in this article are rated for 150 psig (1035 kPa), but most manufacturers' valves have a higher pressure rating.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. A.Y. McDonald Mfg. Co.
 - a. Ford Meter Box Company, Inc. (The).
 - b. Jones, James Company.
 - c. Master Meter, Inc.
 - d. Mueller Co.
 - 2. Red Hed Manufacturing Company; a division of Everett J. Prescott, Inc.
 - 3. Retain "Manifold" Subparagraph below if utility company requires multiple connections.
 - 4. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.
- C. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angle- or straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.9 CURB VALVES

- A. Caution: High-pressure valves in this article are rated for 150 psig (1035 kPa), but most manufacturers' valves have a higher pressure rating.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. A.Y. McDonald Mfg. Co.
 - a. Ford Meter Box Company, Inc. (The).
 - b. Jones, James Company.
 - c. Master Meter, Inc.
 - d. Mueller Co.
 - e. Red Hed Manufacturing Company; a division of Everett J. Prescott, Inc.
- C. Curb Valves: Comply with AWWA C800 for high-pressure, service-line valves. Valve has bronze body, ground-key plug or ball, wide tee head, and inlet and outlet matching service piping material.
- D. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.
 - 1. Shutoff Rods: Steel; with tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.
- E. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angle- or straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.10 BACKFLOW PREVENTERS

- A. Reduce Pressure, Backflow-Prevention Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ames Fire & Waterworks.
 - b. Conbraco Industries, Inc.
 - c. FEBCO.
 - d. Flomatic Corporation.
 - e. Mueller Co.
 - f. Watts; a Watts Water Technologies company.
 - g. Zurn Industries, LLC.
 - 2. Standard: ASSE 1015.
 - 3. Operation: Continuous-pressure applications unless otherwise indicated.
 - 4. Pressure Loss: 5 psig maximum, through middle one-third of flow range.
 - 5. Size: T.B.D. by Fire Protection Contractor/Designer.
 - 6. Design Flow Rate: T.B.D. by Fire Protection Contractor/Designer.
 - 7. Body Material: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved or stainless steel for NPS 2-1/2 and larger.
 - 8. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 9. Configuration: See Drawings.
 - 10. Accessories: Ball valves with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate valves with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - 11. Drain Cup
- B. Backflow Preventer Test Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO.
 - c. Flomatic Corporation.
 - d. Watts; a Watts Water Technologies company.
 - e. Zurn Industries, LLC.
 - 2. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with testprocedure instructions.

PART 3 - EXECUTION

- 3.1 EARTHWORK
 - A. Comply with excavating, trenching, and backfilling requirements in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Water-Main Connection: Arrange with water utility company for tap of size and in location indicated in water main.
- B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.
- C. Make connections larger than NPS 2 with tapping machine according to the following:
 - 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 - 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 - 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 - 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
- D. Make connections NPS 2 and smaller with drilling machine according to the following:
 - 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company's standards.
 - 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 - 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 - 4. Install corporation valves into service-saddle assemblies.
 - 5. Install manifold for multiple taps in water main.
 - 6. Install curb valve in water-service piping with head pointing up and with service box.
- E. Comply with NFPA 24 for fire-service-main piping materials and installation.
- F. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
- G. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 - 1. Install encasement for piping according to ASTM A 674 or AWWA C105.
- H. Install PE pipe according to ASTM D 2774 and ASTM F 645.
- I. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- J. Bury piping with depth of cover over top at least 60 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
- K. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.
- L. Extend fire-suppression water-service piping and connect to water-supply source and building firesuppression water-service piping systems at locations and pipe sizes indicated.
 - 1. Terminate fire-suppression water-service piping within the building at the floor slab or exterior wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building's fire-suppression water-service piping systems when those systems are installed.

- M. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.
- N. Comply with requirements in Section 21 12 00 "Fire-Suppression Standpipes," Section 21 13 13 "Wet-Pipe Sprinkler Systems," and Section 21 13 16 "Dry-Pipe Sprinkler Systems" for firesuppression-water piping inside the building.
- O. Comply with requirements in Section 22 11 16 "Domestic Water Piping" for potable-water piping inside the building.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure rating same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in tubing NPS 2 and smaller.
- C. Install flanges, flange adaptors, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of tubes and remove burrs.
- E. Remove scale, slag, dirt, and debris from outside and inside of pipes, tubes, and fittings before assembly.
- F. Copper-Tubing, Brazed Joints: Join copper tube and fittings according to CDA's "Copper Tube Handbook," "Brazed Joints" Chapter.
- G. Copper-Tubing, Pressure-Sealed Joints: Use proprietary crimping tool and procedure recommended by copper, pressure-seal-fitting manufacturer.
- H. Ductile-Iron Piping, Gasketed Joints for Fire-Service-Main Piping: UL 194.
- I. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-ironpiping couplings, gaskets, lubricant, and bolts.
- J. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with bolts according to ASME B31.9.
- K. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
- L. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139.

- M. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.
- N. Do not use flanges or unions for underground piping.

3.4 ANCHORAGE INSTALLATION

- A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 - 1. Concrete thrust blocks.
 - 2. Locking mechanical joints.
 - 3. Set-screw mechanical retainer glands.
 - 4. Bolted flanged joints.
 - 5. Heat-fused joints.
 - 6. Pipe clamps and tie rods.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches in firesuppression water-service piping according to NFPA 24 and the following:
 - 1. Gasketed-Joint, Ductile-Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.5 VALVE INSTALLATION

- A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44.
- B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.
- C. UL-Listed or FM Global-Approved Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
- D. UL-Listed or FM Global-Approved Valves Other Than Gate Valves: Comply with NFPA 24.
- E. MSS Valves: Install as component of connected piping system.
- F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- G. Support valves and piping, not direct buried, on concrete piers.

3.6 CONNECTIONS

- A. Connect fire-suppression water-service piping to utility water main. Use tapping sleeve and tapping valve.
- B. Connect fire-suppression water-service piping to interior fire-suppression piping.

3.7 FIELD QUALITY CONTROL

- A. Use test procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described below.
- B. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- C. Hydrostatic Tests: Test at not less than one-and-one-half times the working pressure for two hours.
 - 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for one hour; decrease to zero psig. Slowly increase again to test pressure and hold for one more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- D. Prepare test and inspection reports.

3.8 IDENTIFICATION

- A. Install continuous underground detectable warning tape during backfilling of trench for underground fire-suppression water-service piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 31 20 00 "Earth Moving."
- B. Permanently attach equipment nameplate or marker indicating plastic fire-suppression water-service piping or fire-suppression water-service piping with electrically insulated fittings, on main electrical meter panel. Comply with requirements for identifying devices in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.9 PIPING SCHEDULE

- A. Underground fire-suppression water-service piping NPS 3 shall be one of the following:
 - 1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
- B. Underground fire-suppression water-service piping NPS 4 shall be one of the following:
 - 1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
 - 2. PVC, Class 150 pipe listed for fire-protection service; PVC fittings of same class as pipe; and gasketed joints.
- C. Underground fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:
 - 1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
 - 2. PVC, Class 150 pipe listed for fire-protection service; PVC fittings of same class as pipe; and gasketed joints.
- D. Aboveground fire-suppression water-service piping NPS 3 and NPS 4 shall be the following:

- 1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- E. Aboveground fire-suppression water-service piping NPS 5 to NPS 12 shall be grooved-end, ductileiron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
- F. Underslab fire-suppression water-service piping NPS 3 and NPS 4 shall be the following:
 - 1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.
- G. Underslab fire-suppression water-service piping NPS 6 to NPS 12 shall be the following:
 - 1. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.

3.10 VALVE SCHEDULE

- A. Underground fire-suppression water-service shutoff valves NPS 3 and larger shall be one of the following:
 - 1. 200-psig, AWWA, iron, nonrising-stem, resilient-seated gate valves.
 - 2. 250-psig, AWWA, iron, nonrising-stem, resilient-seated gate valves.
 - 3. 175-psig, UL-listed or FM Global-approved, iron, nonrising-stem gate valves.
- B. Indicator-post underground fire-suppression water-service valves NPS 3 and larger shall be 175psig, UL-listed or FM Global-approved, iron, nonrising-stem gate valves with indicator-post flange.
- C. Standard-pressure, aboveground fire-suppression water-service shutoff valves NPS 3 and larger shall be one of the following:
 - 1. 200-psig, AWWA, iron, OS&Y, resilient-seated gate valves.
 - 2. 250-psig, AWWA, iron, OS&Y, resilient-seated gate valves.
 - 3. 175-psig, UL-listed or FM Global-approved, iron, OS&Y gate valves.
 - 4. UL-listed or FM Global-approved butterfly valves.

END OF SECTION 21 11 00

SECTION 21 13 13 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-protection valves.
 - 3. Sprinklers.
 - 4. Fire Department Connections
 - 5. Alarm devices.
 - 6. Pressure gages.
- B. Related Sections:
 - 1. Section 21 13 16 "Dry-Pipe Sprinkler Systems" for dry-pipe sprinkler piping.

1.2 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.3 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Contractor to provide fire hydrant flow test prior to starting design.
- D. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications:
 - a. Building Service Areas: Ordinary Hazard, Group 1.
 - b. Classrooms: Light Hazard.
 - c. Auditoriums: Light Hazard.
 - d. Cafeteria/Restaurant Seating: Light Hazard.
 - e. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 - f. General Storage Areas: Ordinary Hazard, Group 1.
 - g. Libraries except Stack Areas: Light Hazard.
 - h. Library Stack Areas: Ordinary Hazard, Group 2.

- i. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
- j. Office and Public Areas: Light Hazard.
- k. Restaurant Service Areas: Ordinary Hazard, Group 1.
- I. Wood machining: Ordinary Hazard, Group 2.
- m. Metal Working: Ordinary Hazard, Group 2.
- n. Stages: Ordinary Hazard, Group 2.
- 3. Minimum Density for Automatic-Sprinkler Piping Design per NFPA-13 or as follows:
 - a. Residential (Dwelling) Occupancy: 0.05 gpm over 400-sq. ft. area.
 - b. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 - c. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 - d. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 - e. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 - f. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.
 - g. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 4. Maximum Protection Area per Sprinkler: Per UL listing.
- 5. Maximum Protection Area per Sprinkler per NFPA-13 or as follows:
 - a. Residential Areas: 400 sq. ft.
 - b. Office Spaces: 120 sq. ft.
 - c. Storage Areas: 130 sq. ft.
 - d. Mechanical Equipment Rooms: 130 sq. ft.
 - e. Electrical Equipment Rooms: 130 sq. ft.
 - f. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.
- 6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 - b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 - c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.
- E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- D. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

- E. Welding certificates.
- F. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- G. Field quality-control reports.
- H. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 - 3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Standard Weight (Schedule 40), Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Schedule 30, Black-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.

- C. Thinwall Black-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.
- D. Schedule 5 Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, lightwall, with plain ends.
- E. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- F. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.
- G. Galvanized and Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- H. Malleable- or Ductile-Iron Unions: UL 860.
- I. Cast-Iron Flanges: ASME 16.1, Class 125.
- J. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
- K. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- L. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Corcoran Piping System Co.
 - c. National Fittings, Inc.
 - d. Shurjoint Piping Products.
 - e. Smith-Cooper International.
 - f. Tyco Fire & Building Products LP.
 - g. Victaulic Company.
 - 2. Pressure Rating: 250 psig minimum.
 - Galvanized and Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.
- M. Steel Pressure-Seal Fittings: UL 213, FM-approved, 175-psig pressure rating with steel housing, rubber O-rings, and pipe stop; for use with fitting manufacturers' pressure-seal tools.
- N. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Victaulic Company.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.

- 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed or FM approved.
 - 2. Minimum Pressure Rating: 175 psig.
- B. Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Fire Protection Products, Inc.
 - d. Fire-End & Croker Corporation.
 - e. Globe Fire Sprinkler Corporation.
 - f. Kennedy Valve Company; a division of McWane, Inc.
 - g. Metraflex Company (The).
 - h. Milwaukee Valve Company.
 - i. Mueller Co.
 - j. NIBCO INC.
 - k. Potter Roemer LLC.
 - I. Reliable Automatic Sprinkler Co., Inc. (The).
 - m. Tyco Fire & Building Products LP.
 - n. United Brass Works, Inc.
 - o. Victaulic Company.
 - p. Viking Corporation.
 - q. Watts; a Watts Water Technologies company.
 - 2. Standard: UL 312.
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Type: Swing check.
 - 5. Body Material: Cast iron.
 - 6. End Connections: Flanged or grooved.
- C. Bronze OS&Y Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - d. United Brass Works, Inc.

- 2. Standard: UL 262.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.
- D. Iron OS&Y Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Milwaukee Valve Company.
 - d. Mueller Co.
 - e. NIBCO INC.
 - f. Tyco Fire & Building Products LP.
 - g. United Brass Works, Inc.
 - h. Watts; a Watts Water Technologies company.
 - 2. Standard: UL 262.
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Body Material: Cast or ductile iron.
 - 5. End Connections: Flanged or grooved.
- E. Indicating-Type Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Kennedy Valve Company; a division of McWane, Inc.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Tyco Fire & Building Products LP.
 - f. Victaulic Company.
 - 2. Standard: UL 1091.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Valves NPS 2 and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.
 - 5. Valves NPS 2-1/2 and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.
 - 6. Valve Operation: Integral electrical, 115-V ac, prewired, two-circuit, supervisory switch visual indicating device.

2.5 TRIM AND DRAIN VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.
- B. Ball Valves:
- C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - 2. Conbraco Industries, Inc.
 - 3. Kennedy Valve Company; a division of McWane, Inc.
 - 4. Milwaukee Valve Company.
 - 5. NIBCO INC.
 - 6. Potter Roemer LLC.
 - 7. Red-White Valve Corporation.
 - 8. Tyco Fire & Building Products LP.
 - 9. Victaulic Company.
 - 10. Watts; a Watts Water Technologies company.

2.6 SPECIALTY VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body Material: Cast or ductile iron.
 - 4. Size: Same as connected piping.
 - 5. End Connections: Flanged or grooved.
- B. Alarm Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Kidde Fire Fighting; A UTC Business Unit.
 - c. Reliable Automatic Sprinkler Co., Inc. (The).
 - d. Tyco Fire & Building Products LP.
 - e. Venus Fire Protection Ltd.
 - f. Victaulic Company.
 - g. Viking Corporation.
 - 2. Standard: UL 193.
 - 3. Design: For horizontal or vertical installation.
 - 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, retarding chamber, and fill-line attachment with strainer.
 - 5. Drip Cup Assembly: Pipe drain without valves and separate from main drain piping.
 - 6. Drip Cup Assembly: Pipe drain with check valve to main drain piping.

- C. Automatic (Ball Drip) Drain Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Kidde Fire Fighting; A UTC Business Unit.
 - b. Reliable Automatic Sprinkler Co., Inc. (The).
 - c. Tyco Fire & Building Products LP.
 - 2. Standard: UL 1726.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Type: Automatic draining, ball check.
 - 5. Size: NPS 3/4.
 - 6. End Connections: Threaded.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

- A. Branch Outlet Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. National Fittings, Inc.
 - c. Shurjoint Piping Products.
 - d. Tyco Fire & Building Products LP.
 - e. Victaulic Company.
 - 2. Standard: UL 213.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.
 - 5. Type: Mechanical-T and -cross fittings.
 - 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 - 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 - 8. Branch Outlets: Grooved, plain-end pipe, or threaded.
- B. Flow Detection and Test Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AGF Manufacturing Inc.
 - b. Reliable Automatic Sprinkler Co., Inc. (The).
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- C. Branch Line Testers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkhart Brass Mfg. Co., Inc.
 - b. Fire-End & Croker Corporation.
 - c. Potter Roemer LLC.
 - 2. Standard: UL 199.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Brass.
 - 5. Size: Same as connected piping.
 - 6. Inlet: Threaded.
 - 7. Drain Outlet: Threaded and capped.
 - 8. Branch Outlet: Threaded, for sprinkler.
- D. Sprinkler Inspector's Test Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AGF Manufacturing Inc.
 - b. Triple R Specialty.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - e. Viking Corporation.
 - 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with sight glass.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- E. Adjustable Drop Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aegis Technologies, Inc.
 - b. CECA, LLC.
 - c. Corcoran Piping System Co.
 - d. Merit Manufacturing.
 - 2. Standard: UL 1474.
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Body Material: Steel pipe with EPDM-rubber O-ring seals.
 - 5. Size: Same as connected piping.
 - 6. Length: Adjustable.
 - 7. Inlet and Outlet: Threaded.
- F. Flexible, Sprinkler Hose Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fivalco Inc.
 - b. FlexHead Industries, Inc.
 - c. Gateway Tubing, Inc.
 - d. Victaulic Company.
- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175 psig minimum.
- 5. Size: Same as connected piping, for sprinkler.

2.8 SPRINKLERS

- A. Coordinate this article with "Sprinkler Schedule" Article.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Globe Fire Sprinkler Corporation.
 - 2. Reliable Automatic Sprinkler Co., Inc. (The).
 - 3. Tyco Fire & Building Products LP.
 - 4. Victaulic Company.
 - 5. Viking Corporation.
- C. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Residential Sprinklers: 175 psig maximum.
 - 3. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
 - 4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.
- D. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Early-Suppression, Fast-Response Applications: UL 1767.
 - 2. Nonresidential Applications: UL 199.
 - 3. Residential Applications: UL 1626.
 - 4. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- E. Sprinkler Finishes:
 - 1. Chrome plated.
 - 2. Bronze.
 - 3. Painted.
- F. Special Coatings:
 - 1. Wax.
 - 2. Lead.
 - 3. Corrosion-resistant paint.

- G. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat or Plastic, white finish, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.
- H. Sprinkler Guards:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc. (The).
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
 - 2. Standard: UL 199.
 - 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
 - 2. Standard: UL 753.
 - 3. Type: Mechanically operated, with Pelton wheel.
 - 4. Alarm Gong: Cast aluminum with red-enamel factory finish.
 - 5. Size: 10-inch diameter.
 - 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
 - 7. Inlet: NPS 3/4.
 - 8. Outlet: NPS 1 drain connection.
- C. Water-Flow Indicators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ADT Security Services, Inc.
 - b. McDonnell & Miller.
 - c. Potter Electric Signal Company, LLC.
 - d. System Sensor.
 - e. Viking Corporation.
 - f. Watts; a Watts Water Technologies company.

- 2. Standard: UL 346.
- 3. Water-Flow Detector: Electrically supervised.
- 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
- 5. Type: Paddle operated.
- 6. Pressure Rating: 250 psig.
- 7. Design Installation: Horizontal or vertical.
- D. Valve Supervisory Switches:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 - b. Kennedy Valve Company; a division of McWane, Inc.
 - c. Potter Electric Signal Company, LLC.
 - d. System Sensor.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled valve is in other than fully open position.

2.10 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AGF Manufacturing Inc.
 - 2. AMETEK, Inc.
 - 3. Ashcroft Inc.
 - 4. Brecco Corporation.
 - 5. WIKA Instrument Corporation.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0 to 250 psig minimum.
- E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.
- F. Air System Piping Gage: Include retard feature and "AIR" or "AIR/WATER" label on dial face.

2.11 FIRE DEPARTMENT CONNECTIONS

- A. Manufacturers:
 - 1. AFAC Inc.
 - 2. Central Sprinkler Corp.
 - 3. Elkhart Brass Mfg. Co., Inc.

- B. Wall-Type, Fire Department Connection: UL 405, 175-psig minimum pressure rating; with corrosion-resistant-metal body with brass inlets, brass wall escutcheon plate, brass lugged caps with gaskets and brass chains, and brass lugged swivel connections. Include inlets with threads according to NFPA 1963 and matching local fire department sizes and threads, outlet with pipe threads, extension pipe nipples, check devices or clappers for inlets, and escutcheon plate with marking similar to "AUTO SPKR & STANDPIPE."
 - 1. Type: Exposed, projecting, with two inlets and round escutcheon plate.
 - 2. Finish: Polished brass.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping in Section 21 11 00 "Facility Fire-Suppression Water-Service Piping."
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers in Section 21 11 00 "Facility Fire-Suppression Water-Service Piping."
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.2 WATER-SUPPLY CONNECTIONS

- A. Connect sprinkler piping to building's interior water-distribution piping. Comply with requirements for interior piping in Section 22 11 16 "Domestic Water Piping."
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping. Comply with requirements for backflow preventers in Section 22 11 19 "Domestic Water Piping Specialties."
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
- C. Install seismic restraints on piping. Comply with requirements for seismic-restraint device materials and installation in NFPA 13.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.
- K. Install alarm devices in piping systems.
- L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.
- N. Fill sprinkler system piping with water.
- O. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- P. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Q. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs onequarter turn or tighten retainer pin.
- I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.
- N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 - 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels. Install at quarter points of narrow dimension.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
- C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Coordinate with fire-pump tests. Operate as required.
 - 7. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.9 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.10 PIPING SCHEDULE

- A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.
- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

- C. Wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 - 1. Standard-weight (Schedule 40), black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 6, shall be one of the following:
 - 1. Standard-weight or Schedule 30, black-steel pipe with roll-grooved ends; uncoated, groovedend fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints. Maintain CRR>1.0.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
 - 3. Schedule 10 black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints. Maintain CRR>1.0.

3.11 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Concealed sprinklers as indicated.
 - 3. Wall Mounting: Sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Upright, pendent, dry sprinklers; and sidewall, dry sprinklers as indicated.
 - 5. Special Applications: Extended-coverage, flow-control, and quick-response sprinklers where indicated.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 - 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
 - 3. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 - 4. Residential Sprinklers: Dull chrome.
 - 5. Upright Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 21 13 13

SECTION 21 13 16 - DRY-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, fittings, and specialties.
 - 2. Fire-protection valves.
 - 3. Sprinkler specialty pipe fittings.
 - 4. Sprinklers.
 - 5. Alarm devices.
 - 6. Pressure gages.
 - 7. Fire Department Connection.
- B. Related Sections:
 - 1. Section 21 13 13 "Wet-Pipe Sprinkler Systems" for wet-pipe sprinkler piping.
 - 2. Section 28 31 11 "Digital, Addressable Fire-Alarm System" for alarm devices not specified in this Section.

1.2 SYSTEM DESCRIPTIONS

A. Dry-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing compressed air. Opening of sprinklers releases compressed air and permits water pressure to open dry-pipe valve. Water then flows into piping and discharges from sprinklers that are open.

1.3 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- C. Contractor to provide fire hydrant flow test prior to starting design.
- D. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications:
 - a. Building Service Areas: Ordinary Hazard, Group 1.
 - b. Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 - c. General Storage Areas: Ordinary Hazard, Group 1.
 - d. Libraries except Stack Areas: Light Hazard.
 - e. Classroom: Light Hazard.
 - f. Auditoriums: Light Hazard.

- g. Restaurant Seating: Light Hazard.
- h. Library Stack Areas: Ordinary Hazard, Group 2.
- i. Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
- j. Office and Public Areas: Light Hazard.
- k. Restaurant Service Areas: Ordinary Hazard, Group 1.
- I. Wood Machining: Ordinary Hazard, Group 2.
- m. Metal Working: Ordinary Hazard, Group 2.
- n. Stages: Ordinary Hazard, Group 2.
- 3. Minimum Density for Automatic-Sprinkler Piping Design:
 - a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 - b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.
 - c. Ordinary-Hazard, Group 2 Occupancy: 0.20 gpm over 1500-sq. ft. area.
 - d. Extra-Hazard, Group 1 Occupancy: 0.30 gpm over 2500-sq. ft. area.
 - e. Extra-Hazard, Group 2 Occupancy: 0.40 gpm over 2500-sq. ft. area.
 - f. Special Occupancy Hazard: As determined by authorities having jurisdiction.
- 4. Maximum Protection Area per Sprinkler: Per UL listing.
- 5. Maximum Protection Area per Sprinkler:
 - a. Office Spaces: 120 sq. ft.
 - b. Storage Areas: 130 sq. ft.
 - c. Mechanical Equipment Rooms: 130 sq. ft.
 - d. Electrical Equipment Rooms: 130 sq. ft.
 - e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.
- 6. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 - b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.
 - c. Extra-Hazard Occupancies: 500 gpm for 90 to 120 minutes.
- E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For dry-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

- A. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.
- B. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 13R, "Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height."
 - 3. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Galvanized-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

- B. Schedule 30, Galvanized-Steel Pipe: ASTM A 135; ASTM A 795/A 795M, Type E; or ASME B36.10M, wrought steel; with wall thickness not less than Schedule 30 and not more than Schedule 40. Pipe ends may be factory or field formed to match joining method.
- C. Thinwall Galvanized-Steel Pipe: ASTM A 135 or ASTM A 795/A 795M, threadable, with wall thickness less than Schedule 30 and equal to or greater than Schedule 10. Pipe ends may be factory or field formed to match joining method.
- D. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- E. Galvanized, Steel Couplings: ASTM A 865, threaded.
- F. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- G. Malleable- or Ductile-Iron Unions: UL 860.
- H. Cast-Iron Flanges: ASME B16.1, Class 125.
- I. Plain-End-Pipe Fittings: UL 213, ductile-iron body with retainer lugs that require one-quarter turn or screwed retainer pin to secure pipe in fitting.
- J. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - 2. Shurjoint Piping Products.
- K. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Corcoran Piping System Co.
 - c. National Fittings, Inc.
 - d. Shurjoint Piping Products.
 - e. Smith-Cooper International.
 - f. Tyco Fire & Building Products LP.
 - g. Victaulic Company.
 - 2. Pressure Rating: 175 psig minimum.
 - 3. Galvanized, Grooved-End Fittings for Steel Piping: ASTM A 47/A 47M, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 - 1. Class 125, Cast-Iron Flat-Face Flanges: Full-face gaskets.
B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

2.4 LISTED FIRE-PROTECTION VALVES

- A. General Requirements:
 - 1. Valves shall be UL listed or FM approved.
 - 2. Minimum Pressure Rating: 175 psig.
- B. Check Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Fire-End & Croker Corporation.
 - d. Globe Fire Sprinkler Corporation.
 - e. Kennedy Valve Company; a division of McWane, Inc.
 - f. Metraflex Company (The).
 - g. Milwaukee Valve Company.
 - h. Mueller Co.
 - i. NIBCO INC.
 - j. Potter Roemer LLC.
 - k. Reliable Automatic Sprinkler Co., Inc. (The).
 - I. Tyco Fire & Building Products LP.
 - m. United Brass Works, Inc.
 - n. Victaulic Company.
 - o. Viking Corporation.
 - p. Watts; a Watts Water Technologies company.
 - 2. Standard: UL 312
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Type: Swing check.
 - 5. Body Material: Cast iron.
 - 6. End Connections: Flanged or grooved.
- C. Bronze OS&Y Gate Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Milwaukee Valve Company.
 - c. NIBCO INC.
 - d. United Brass Works, Inc.
 - 2. Standard: UL 262.
 - 3. Pressure Rating: 175 psig.
 - 4. Body Material: Bronze.
 - 5. End Connections: Threaded.
- D. Iron OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. Mueller Co.
 - f. NIBCO INC.
 - g. Tyco Fire & Building Products LP.
 - h. United Brass Works, Inc.
 - i. Watts; a Watts Water Technologies company.
- 2. Standard: UL 262.
- 3. Pressure Rating: 250 psig minimum.
- 4. Body Material: Cast or ductile iron.
- 5. End Connections: Flanged or grooved.
- E. Indicating-Type Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. NIBCO INC.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - 2. Standard: UL 1091.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Valves NPS 2 and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.
 - 5. Valves NPS 2-1/2 and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.
 - 6. Valve Operation: Integral electrical, 115-V ac, prewired, two-circuit, supervisory switch or visual indicating device.

2.5 TRIM AND DRAIN VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- B. Ball Valves:
- C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - 2. Conbraco Industries, Inc.
 - 3. FNW; Ferguson Enterprises, Inc.
 - 4. Milwaukee Valve Company.
 - 5. NIBCO INC.
 - 6. Potter Roemer LLC.
 - 7. Red-White Valve Corporation.
 - 8. Tyco Fire & Building Products LP.
 - 9. Victaulic Company.
 - 10. Watts; a Watts Water Technologies company.

2.6 SPECIALTY VALVES

- A. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Minimum Pressure Rating: 175 psig.
 - 3. Body Material: Cast or ductile iron.
 - 4. Size: Same as connected piping.
 - 5. End Connections: Flanged or grooved.
- B. Dry-Pipe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Kidde Fire Fighting; A UTC Business Unit.
 - c. Reliable Automatic Sprinkler Co., Inc. (The).
 - d. Tyco Fire & Building Products LP.
 - e. Venus Fire Protection Ltd.
 - f. Victaulic Company.
 - g. Viking Corporation.
 - 2. Standard: UL 260
 - 3. Design: Differential-pressure type.
 - 4. Include UL 1486, quick-opening devices, trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 - 5. Air Compressor:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Gast Manufacturing Inc.
 - 2) General Air Products, Inc.
 - 3) Viking Corporation.

- b. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- c. Motor Horsepower: Fractional.
- d. Power: 120-V ac, 60 Hz, single phase.

2.7 SPRINKLER SPECIALTY PIPE FITTINGS

- A. General Requirements for Dry-Pipe-System Fittings: UL listed for dry-pipe service.
- B. Branch Outlet Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. National Fittings, Inc.
 - c. Shurjoint Piping Products.
 - d. Tyco Fire & Building Products LP.
 - e. Victaulic Company.
 - 2. Standard: UL 213.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.
 - 5. Type: Mechanical-T and -cross fittings.
 - 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
 - 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
 - 8. Branch Outlets: Grooved, plain-end pipe, or threaded.
- C. Flow Detection and Test Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AGF Manufacturing Inc.
 - b. Reliable Automatic Sprinkler Co., Inc. (The).
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- D. Branch Line Testers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkhart Brass Mfg. Co., Inc.
 - b. Fire-End & Croker Corporation.

- c. Potter Roemer LLC.
- 2. Standard: UL 199.
- 3. Pressure Rating: 175 psig minimum.
- 4. Body Material: Brass.
- 5. Size: Same as connected piping.
- 6. Inlet: Threaded.
- 7. Drain Outlet: Threaded and capped.
- 8. Branch Outlet: Threaded, for sprinkler.
- E. Sprinkler Inspector's Test Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AGF Manufacturing Inc.
 - b. Triple R Specialty.
 - c. Tyco Fire & Building Products LP.
 - d. Victaulic Company.
 - e. Viking Corporation.
 - 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 3. Pressure Rating: 175 psig minimum.
 - 4. Body Material: Cast- or ductile-iron housing with sight glass.
 - 5. Size: Same as connected piping.
 - 6. Inlet and Outlet: Threaded.
- F. Adjustable Drop Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CECA, LLC.
 - b. Corcoran Piping System Co.
 - c. Merit Manufacturing.
 - 2. Standard: UL 1474.
 - 3. Pressure Rating: 250 psig minimum.
 - 4. Body Material: Steel pipe with EPDM O-ring seals.
 - 5. Size: Same as connected piping.
 - 6. Length: Adjustable.
 - 7. Inlet and Outlet: Threaded.
- G. Flexible, Sprinkler Hose Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fivalco Inc.
 - b. FlexHead Industries, Inc.
 - c. Gateway Tubing, Inc.
 - d. Victaulic Company.

- 2. Standard: UL 1474.
- 3. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid.
- 4. Pressure Rating: 175 psig minimum.
- 5. Size: Same as connected piping, for sprinkler.

2.8 SPRINKLERS

- A. Coordinate this article with "Sprinkler Schedule" Article.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Globe Fire Sprinkler Corporation.
 - 2. Kidde Fire Fighting; A UTC Business Unit.
 - 3. Reliable Automatic Sprinkler Co., Inc. (The).
 - 4. Tyco Fire & Building Products LP.
 - 5. Venus Fire Protection Ltd.
 - 6. Victaulic Company.
 - 7. Viking Corporation.
- C. General Requirements:
 - 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
 - 2. Pressure Rating for Residential Sprinklers: 175 psig maximum.
 - 3. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
 - 4. Pressure Rating for High-Pressure Automatic Sprinklers: 250 psig minimum.
- D. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Nonresidential Applications: UL 199.
 - 2. Residential Applications: UL 1626.
 - 3. Characteristics: Nominal 1/2-inch orifice with discharge coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
- E. Sprinkler Finishes:
 - 1. Chrome plated.
 - 2. Bronze.
 - Painted.
- F. Special Coatings:
 - 1. Wax.
 - 2. Lead.
 - 3. Corrosion-resistant paint.
- G. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, one piece, flat.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

H. Sprinkler Guards:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc. (The).
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.9 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Globe Fire Sprinkler Corporation.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
 - 2. Standard: UL 753.
 - 3. Type: Mechanically operated, with Pelton wheel.
 - 4. Alarm Gong: Cast aluminum with red-enamel factory finish.
 - 5. Size: 10-inch diameter.
 - 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
 - 7. Inlet: NPS 3/4.
 - 8. Outlet: NPS 1 drain connection.
- C. Valve Supervisory Switches:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 - b. Kennedy Valve Company; a division of McWane, Inc.
 - c. Potter Electric Signal Company, LLC.
 - d. System Sensor.
 - 2. Standard: UL 346.
 - 3. Type: Electrically supervised.
 - 4. Components: Single-pole, double-throw switch with normally closed contacts.
 - 5. Design: Signals that controlled valve is in other than fully open position.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.10 PRESSURE GAGES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AGF Manufacturing Inc.
 - 2. AMETEK, Inc.
 - 3. Ashcroft Inc.
 - 4. Brecco Corporation.
 - 5. WIKA Instrument Corporation.
- B. Standard: UL 393.
- C. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- D. Pressure Gage Range: 0 to 250 psig minimum.
- E. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.
- F. Air System Piping Gage: Include "AIR" or "AIR/WATER" label on dial face.

2.11 FIRE DEPARTMENT CONNECTIONS

- A. Manufacturers:
 - 1. AFAC Inc.
 - 2. Central Sprinkler Corp.
 - 3. Elkhart Brass Mfg. Co., Inc.
- B. Wall-Type, Fire Department Connection: UL 405, 175-psig minimum pressure rating; with corrosion-resistant-metal body with brass inlets, brass wall escutcheon plate, brass lugged caps with gaskets and brass chains, and brass lugged swivel connections. Include inlets with threads according to NFPA 1963 and matching local fire department sizes and threads, outlet with pipe threads, extension pipe nipples, check devices or clappers for inlets, and escutcheon plate with marking similar to "AUTO SPKR & STANDPIPE."
 - 1. Type: Exposed, projecting, with two inlets and round escutcheon plate.
 - 2. Finish: Polished brass.

PART 3 - EXECUTION

3.1 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements in Section 21 11 00 "Facility Fire-Suppression Water-Service Piping" for exterior piping.
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-service piping. Comply with requirements in Section 21 11 00 "Facility Fire-Suppression Water-Service Piping" for backflow preventers.
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water service.

3.2 WATER-SUPPLY CONNECTIONS

- A. Connect sprinkler piping to building's interior water-distribution piping. Comply with requirements in Section 22 11 16 "Domestic Water Piping" for interior piping.
- B. Install shutoff valve, backflow preventer, pressure gage, drain, and other accessories indicated at connection to water-distribution piping. Comply with requirements in Section 22 11 19 "Domestic Water Piping Specialties" for backflow preventers.
- C. Install shutoff valve, check valve, pressure gage, and drain at connection to water supply.

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements in NFPA 13 for installation of sprinkler piping.
- C. Install seismic restraints on piping. Comply with requirements in NFPA 13 for seismic-restraint device materials and installation.
- D. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- E. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- F. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- G. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- H. Install sprinkler piping with drains for complete system drainage.
- I. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.
- J. Install automatic (ball drip) drain valves to drain piping between fire-department connections and check valves. Drain to floor drain or to outside building.
- K. Install alarm devices in piping systems.
- L. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements in NFPA 13 for hanger materials.
- M. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

- N. Drain dry-pipe sprinkler piping.
- O. Pressurize and check dry-pipe sprinkler system piping and air-pressure maintenance devices, air compressors.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 21 05 17 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs onequarter turn or tighten retainer pin.
- I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- J. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.
- D. Specialty Valves:
 - 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 - 2. Dry-Pipe Valves: Install trim sets for air supply, drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.
 - a. Install air compressor and compressed-air supply piping.

3.6 SPRINKLER INSTALLATION

- A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels. Install sprinklers at quarter points of long dimension of acoustical ceiling panels.
- B. Install dry-type sprinklers with water supply from heated space. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.
- C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

3.7 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.

- 5. Start and run air compressors.
- 6. Coordinate with fire-alarm tests. Operate as required.
- 7. Coordinate with fire-pump tests. Operate as required.
- 8. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.9 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.10 PIPING SCHEDULE

- A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with threaded ends; cast-iron threaded fittings; and threaded joints.
- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Dry-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 - 1. Standard-weight (Schedule 40), galvanized-steel pipe with threaded ends; galvanized, grayiron threaded fittings; and threaded joints.
- D. Dry-pipe sprinkler system, NPS 2-1/2 to NPS 6, shall be one of the following:
 - 1. Standard-weight or Schedule 30, galvanized-steel pipe with threaded ends; galvanized, grayiron threaded fittings; and threaded joints.
 - 2. Standard-weight or Schedule 30, galvanized-steel pipe with cut-grooved ends; galvanized, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Schedule 10, galvanized-steel pip with roll-grooved ends; galvanized, grooved and fittings for steel piping.

3.11 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Dry pendent, recessed, flush, and concealed sprinklers, as indicated.
 - 3. Wall Mounting: Dry sidewall sprinklers.
 - 4. Spaces Subject to Freezing: Upright, dry pendent sprinklers; and dry sidewall sprinklers as indicated.
 - 5. Special Applications: Extended-coverage and quick-response sprinklers where indicated.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.

- 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
- 2. Flush Sprinklers: Bright chrome, with painted white escutcheon.
- 3.
- Recessed Sprinklers: Bright chrome, with bright chrome escutcheon. Upright, Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in 4. unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 21 13 16

SECTION 22 00 00 - PLUMBING GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 MECHANICAL REQUIREMENTS

- A. The mechanical requirements are supplemental to the General Requirements of these Specifications. The Mechanical Sections shall apply to phases of the work specified, shown on the Drawings, or required to provide for the complete installation of Mechanical Systems for this project.
- B. The work shall include all items, articles, materials, operations and methods listed, mentioned, or scheduled in these specifications and the accompanying drawings. All material, equipment, and labor shall be furnished together with all incidental items required by good practice to provide the complete systems described.
- C. Examine and refer to all Architectural, Civil, Structural, Electrical, Utility, Landscape and Mechanical drawings and specifications for construction conditions which may affect the mechanical work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.
- D. See general requirements for listed Alternate Bids. Note alternates listed and include any changes in work and price required to meet the requirements of the respective alternate.

1.2 CODES AND STANDARDS

- A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following Organizations:
 - 1. American Society of Mechanical Engineers (ASME)
 - 2. American Water Works Association (AWWA)
 - 3. National Electrical Code (NEC)
 - 4. National Electrical Manufacturers Association (NEMA)
 - 5. National Fire Protection Association (NFPA)
 - 6. International Plumbing Code
 - 7. Occupational Safety & Health Act (OSHA)
 - 8. Plastic Pipe Institute (PPI)
 - 9. Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
 - 10. International Mechanical Code (IMC)
 - 11. International Building Code (IBC)
 - 12. Requirements of the Serving Utility Company
 - 13. Local and State Codes and Ordinances
 - 14. SMACNA Seismic Manual

1.3 FEES AND PERMITS

A. The Mechanical Contractor shall pay all fees and arrange for all permits required for work done under his contract and under his supervision by subcontract.

- B. All usage contracts between the Owner and the serving utilities company, such as membership and usage charges or fees, etc., for the purpose of obtaining the services for the utility company shall be applied for and paid for by the Owner.
- C. All permits and fees for connection to the utility, including inspection and staking costs imposed by the utility company or required for proper installation, and all necessary manholes, encasements, valves, service boxes, meters, meter housings or vaults complete as required by the utility company of jurisdictional agency, shall be applied for and paid by the Mechanical Contractor.
- D. Exception: The gas service from the main to and including the gas meter will be furnished and installed by the gas company and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

- A. Manufacturers trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed must have prior approval. Written prior approval must be obtained from the Architect/Engineer ten (10) days prior to bid opening. Requests are to be submitted sufficiently ahead of the deadline to give ample time for examination. The items approved will be listed in an addendum and only this list of equipment will be accepted in lieu of specified products. Submittals must indicate the specific item or items to be furnished in lieu of those specified, together with complete technical and comparative data on specified items and proposed items. See list of prior approved manufacturers at end of this section.
- B. Mechanical equipment may be installed with manufacturer's standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.
- C. This Contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.
- D. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by manufacturer unless herein specified to the contrary.
- E. This Contractor shall make the required arrangement with General Contractor for the introduction into the building of equipment too large to pass through finished openings.
- F. Store materials and equipment indoors at the job site or, if this is not possible, store on raised platforms and protect from the weather by means of waterproof covers. Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.

1.5 INTENT OF DRAWINGS

A. The drawings are partly diagrammatic and do not necessarily show exact location of piping and ductwork unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining lineal runs of piping or ductwork, nor shall they be used for shop drawings for piping and ductwork fabrication or ordering. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 **RESPONSIBILITY**

- A. The Mechanical Contractor shall be responsible for the installation of a satisfactory and complete system in accordance with the intent of the drawing and specifications. Provide, at no extra cost, all incidental items required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.
- B. The drawings do not attempt to show complete details of the building construction which affect the mechanical installation; and reference is therefore required to the Architectural, Civil, Structural, Landscape and Electrical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.
- C. Location of mechanical system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and his decision shall govern. Necessary changes shall be made at the Contractor's expense.
- D. Determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves, and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed.
- E. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.
- F. Take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor's risk.
- G. At all times during the performance of this Contract, properly protect work from damage and protect the Owner's property from injury of loss. Make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. Adequately protect adjacent property as provided by law and the Bidding Documents. Provide and maintain passageways, guard fences, lights and other facilities for protection required by Public Authority or Local conditions.
- H. The Contractor shall be responsible for damages due to the work of their Contractors, to the building or its contents, people, etc.

1.7 REVIEW

A. All work and material is subject to review at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform with these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at the Contractor's expense.

1.8 WORKMANSHIP

A. GENERAL

1. Work under this contract shall be performed by workmen skilled in the particular trade, including work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.

B. EXCAVATION AND BACKFILL

- 1. Provide all excavating and backfilling as required, with backfilling only after approval of the Architect. Backfill to be free of all debris and decayable matter. See Excavation and Backfill requirements in SECTION 31 20 00 EARTH MOVING.
- C. CUTTING, PATCHING, AND FRAMING
 - 1. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by this Contractor shall be the responsibility of this Contractor and shall be repaired by skilled craftsmen of the trades involved at the Contractor's expense.
 - 2. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, framing for equipment, provided by others only if so noted on the drawings. Otherwise, they will be provided by this Contractor for his work. Whether chases, etc., are provided by this Contractor or others, this Contractor is responsible for correct size and locations.

1.9 COORDINATION

A. This Contractor shall plan his work to proceed with a minimum interference with other trades and it shall be his responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.

1.10 CLEAN UP

- A. Keep the premises free from accumulation of waste material or rubbish caused by his work or employees.
- B. Upon completion of work, remove materials, scraps and debris relative to his work and leave the premises, including tunnels, crawl spaces, and pipe chases in clean and orderly condition. Remove all dirt and debris from the interior and exterior of all devices and equipment. After construction is completed, wash all mechanical equipment.

1.11 DUST PROTECTION

A. Contractor will provide suitable dust protection for all existing areas prior to beginning of cutting or demolition. Contractor will obtain approval of partition from Owner before proceeding with work involved in these rooms.

1.12 TEMPORARY FACILITIES

- A. OFFICES
 - 1. Contractor may provide a temporary office for himself and for the periodic use by the Architect\Engineer.
- B. REMOVAL

- 1. Contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinished to match adjacent areas.
- C. LADDERS AND SCAFFOLDS
 - 1. The Contractor shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the Contractor.

D. PROTECTION DEVICES

- 1. The Contractor shall provide and maintain his own necessary barricades, fences, signal lights, etc., required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the Contractor. The Contractor shall assume all responsibility for which the Owner may be held responsible because of lack of above items.
- E. TEMPORARY WATER
 - 1. The Contractor shall provide all water required by his trade for construction. Temporary drinking water shall be provided by Contractor from a proven safe source dispensed by single service containers, until such time as the construction water outlet has been installed, disinfected, and approved for drinking purposes.
- F. TEMPORARY FIRE PROTECTION
 - 1. The Contractor shall provide all necessary first-aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority. The Contractor shall provide general area fire extinguishers only.

1.13 SHOP DRAWINGS

- A. Provide eight (8) copies of manufacturer's literature and/or certified prints as soon as possible but within thirty (30) days after awarding of Contract, for items of materials, equipment, or systems where called for in specifications. Shop drawings and literature complete showing item used, size, dimensions, capacity, rough-in, etc., as required for complete check and installation. Manufacturers literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.
- B. Each copy of each item submitted must be clearly marked as follows for purposes of identification and record. Submittals not marked (typewritten only) as described below will be rejected and returned without review.
 - Date: Name of Project: Branch of Work: Submitted by: Specification or Plan Reference:
- C. Prior to their submission, each submittal shall be thoroughly checked by the Contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made,

if any. Submittals requiring extensive corrections shall be revised before submission. <u>Each submittal</u> not stamped and signed by the Contractor evidencing such checking will be rejected and returned without review.

- D. All submittals will be examined when submitted in proper form for compliance. Such review shall not relieve the Contractor of responsibility for errors, for deviation from the contract Documents, nor for violation of sound safety practices.
- E. The Contractor shall keep in the field office one print of each submittal which has been reviewed and stamped by the Architect or Engineer.
- F. Submittals will be required for each item of material and equipment furnished as noted in specifications.
- G. Submittals which are incomplete relative to quality requirements, capacity, engineering data, dimensional data or detailed list of specialty or control equipment will be rejected. Lists shall include descriptive coding as specified or shown on drawings.

THE ENGINEER WILL PERFORM SHOP DRAWING REVIEW OF EACH ITEM; HOWEVER, SUBSEQUENT REVIEW OF ITEMS PREVIOUSLY REJECTED WILL BE BILLED TO THE CONTRACTOR AT A RATE OF \$100 PER HOUR.

H. Schedule of Shop Drawings.

1.	22 05 17	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
2.	22 05 18	ESCUTCHEONS FOR PLUMBING PIPING
3.	22 05 19	METERS AND GAGES FOR PLUMBING PIPING
4.	22 05 23.12	BALL VALVES FOR PLUMBING PIPING
5.	22 05 23.13	BUTTERFLY VALVES FOR PLUMBING PIPING
6.	22 05 23.14	CHECK VALVES FOR PLUMING PIPING
7.	22 05 29	HANGERS & SUPPORTS FOR PLUMBING PIPING & EQUIPMENT
8.	22 05 48.13	VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT
9.	22 05 53	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
10.	22 07 19	PLUMBING PIPING INSULATION
11.	22 11 13	FACILITY WATER DISTRIBUTION PIPING
12.	22 11 16	DOMESTIC WATER PIPING
13.	22 11 19	DOMESTIC WATER PIPING SPECIALTIES
14.	22 11 23	DOMESTIC WATER PUMPS
15.	22 13 16	SANITARY WASTE AND VENT PIPING
16.	22 13 19	SANITARY WASTE PIPING SPECIALTIES
17.	22 13 23	SANITARY WASTE INTERCEPTORS
18.	22 14 13	FACILITY STORM DRAINAGE PIPING
19.	22 14 23	STORM DRAINAGE PIPING SPECIALTIES
20.	22 15 13	GENERAL-SERVICE COMPRESSED-AIR PIPING
21.	22 15 19	GENERAL-SERVICE PACKAGED AIR COMPRESSORS & RECEIVERS
22.	22 34 00	FUEL-FIRED DOMESTIC WATER HEATERS AND STORAGE TANKS
23.	22 42 13.13	COMMERCIAL WATER CLOSETS
24.	22 42 13.16	COMMERCIAL URINALS
25.	22 42 16.13	COMMERCIAL LAVATORIES
26.	22 42 16.16	COMMERCIAL SINKS
27.	22 42 23	COMMERCIAL SHOWERS
28.	22 45 00	EMERGENCY PLUMBING FIXTURES
29.	22 47 16	PRESSURE WATER COOLERS

I. Submittals shall be properly bound in a three-ring binder or equivalent method. Unbound submittals shall be returned without review.

1.14 OPERATION AND MAINTENANCE MANUALS

A. At the time orders are placed for any item of equipment requiring service or operating maintenance, the <u>Contractor</u> shall request the manufacturer furnish three (3) copies of OPERATION AND MAINTENANCE INSTRUCTIONS for each piece of equipment. These shall be included in the brochure of equipment.

1.15 BROCHURE OF EQUIPMENT

- A. Upon completion of work, prepare three copies of "Brochure of Equipment" containing data pertinent to equipment and systems on job. Binders containing materials shall be one or more three ring binders of sufficient number to hold all literature. Contained in binders shall be: Installation, maintenance, and operating instructions for each piece of equipment; parts lists; wiring diagrams; one copy of each shop drawing and literature submittal; record drawings, etc.
- B. All literature shall be clean, unused and filed under divider headings corresponding to the specifications.
- C. These brochures shall be submitted to the Architect/Engineer and approved by him before authorization of final payment.

1.16 AS-BUILT DRAWINGS

- A. The Contractor shall furnish to the Owner and Architect/Engineer a marked print showing the location of all concealed or underground pipe or conduit runs and other equipment installed other than as shown on the drawings. Dimension underground lines from established building lines. Indicate all installed pull boxes in conduit runs.
- B. The Contractor shall furnish to the Architect/Engineer a marked print showing the location of all mechanical equipment, plumbing fixtures, piping, ductwork, diffusers, grilles, etc. The location of any item which deviates from the bid documents shall be accurately drawn and dimensioned.
- C. All underground piping and ductwork shall be dimensioned from nearest column and/or exterior walls. The location of all maintenance related items such as duct access doors, fire dampers, isolation valves, filters, etc., shall be highlighted on as built drawing.

1.17 PLACING SYSTEMS IN OPERATION

- A. At the completion of the work and at such time as the Owner shall direct, prior to final acceptance, the Contractor performing this work shall put into satisfactory operation the various systems installed under the specifications. At no additional cost to the Owner, furnish the services of a person completely familiar with the installations performed under this specification, to instruct the Owner's operating personnel in the proper operation and servicing of the equipment and systems. These services shall be available for a period of no less than one (1) day.
- B. Provide an 11 month training walkthrough and warranty review.

1.18 WARRANTY

- A. The Contractor shall guarantee that all materials and labor installed are new and of first quality and that any material or labor found defective shall be replaced without cost to the Owner within one (1) year after substantial completion of the Contract or one (1) full season of heating and cooling operation, whichever is the greater. The guarantee shall list the date of the beginning of the one (1) year period, which shall be the date that the Substantial Completion Certificate is issued.
- B. Any damage to the building, caused by defective work or material of the Contractor within the abovementioned period, shall be satisfactorily repaired without cost to the Owner.
- C. The guarantee does not include maintenance of equipment. The Owner shall accept full responsibility for proper operation and maintenance of equipment immediately upon substantial completion and occupancy of the building.
- D. Final acceptance by the Owner will not occur until all operating instructions are mounted in Equipment Rooms and Operating Personnel thoroughly indoctrinated in the operation of all mechanical equipment by the Contractor.
- E. Any equipment, including heat exchangers, boilers, pumps, air handlers, motors, etc., used for temporary heat, shall be brought up to a new condition before final acceptance by the Owner and shall be guaranteed by the Contractor as new equipment.

END OF SECTION 22 00 00

SECTION 22 05 00 - COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Sleeves.
 - 5. Escutcheons.
 - 6. Grout.
 - 7. Equipment installation requirements common to equipment sections.
 - 8. Concrete bases.
 - 9. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than plumbing and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and plumbing equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."

- 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
- 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for Plumbing Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 22 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 22 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.

- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Stainless steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 ESCUTCHEONS

A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.

- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated.

2.7 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 22 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.

- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "07 84 10 Through-Penetration Firestop Systems" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 22 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
 - 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
 - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install plumbing equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03 Section "Cast-in-Place Concrete or Miscellaneous Cast-in-Place Concrete."

3.6 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to Division 05 Section "Metal Fabrications" for structural steel.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor plumbing materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.7 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor plumbing materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.

- C. Attach to substrates as required to support applied loads.
- 3.8 GROUTING
 - A. Mix and install grout for plumbing equipment base bearing surfaces, pump and other equipment base plates, and anchors.
 - B. Clean surfaces that will come into contact with grout.
 - C. Provide forms as required for placement of grout.
 - D. Avoid air entrapment during placement of grout.
 - E. Place grout, completely filling equipment bases.
 - F. Place grout on concrete bases and provide smooth bearing surface for equipment.
 - G. Place grout around anchors.
 - H. Cure placed grout.

END OF SECTION 22 05 00

SECTION 22 05 17 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Sleeve-seal systems in this article are used for piping penetrations in slabs-on-grade and below grade in exterior walls. These systems are available for NPS 1/2 to NPS 48 (DN 15 to DN 1200) piping.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.

- 5. Proco Products, Inc.
- C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydrauliccement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 92 00 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section "07 84 10 Through-Penetration Firestop Systems".

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: PVC-pipe sleeves.
 - b. Piping NPS 6 and Larger: PVC-pipe sleeves.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

END OF SECTION 22 05 17

SECTION 22 05 18 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.

- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stampedsteel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
- h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
- j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chromeplated finish.
- k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 22 05 18
SECTION 22 05 19 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bimetallic-actuated thermometers.
 - 2. Liquid-in-glass thermometers.
 - 3. Thermowells.
 - 4. Dial-type pressure gages.
 - 5. Gage attachments.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Product certificates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ashcroft Inc.
 - 2. Ernst Flow Industries.
 - 3. Marsh Bellofram.
 - 4. Miljoco Corporation.
 - 5. Nanmac Corporation.
 - 6. Noshok.
 - 7. Palmer Wahl Instrumentation Group.
 - 8. REOTEMP Instrument Corporation.
 - 9. Tel-Tru Manufacturing Company.
 - 10. Trerice, H. O. Co.
 - 11. Watts; a Watts Water Technologies company.
 - 12. Weiss Instruments, Inc.
 - 13. Weksler Glass Thermometer Corp.
 - 14. WIKA Instrument Corporation.

- 15. Winters Instruments U.S.
- B. Standard: ASME B40.200.
- C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.
- D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.
- E. Connector Type(s): Union joint, rigid, back and rigid, bottom, with unified-inch screw threads.
- F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
- G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- H. Window: Plain glass.
- I. Ring: Stainless steel.
- J. Element: Bimetal coil.
- K. Pointer: Dark-colored metal.
- L. Accuracy: Plus or minus 1 percent of scale range.

2.2 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flo Fab inc.
 - b. Miljoco Corporation.
 - c. Palmer Wahl Instrumentation Group.
 - d. Tel-Tru Manufacturing Company.
 - e. Trerice, H. O. Co.
 - f. Weiss Instruments, Inc.
 - g. Weksler Glass Thermometer Corp.
 - h. Winters Instruments U.S.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.4 PRESSURE GAGES

- A. Direct-Mounted and remote mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. Flo Fab inc.
 - e. Marsh Bellofram.
 - f. Miljoco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Tel-Tru Manufacturing Company.
 - k. Trerice, H. O. Co.
 - I. Watts; a Watts Water Technologies company.
 - m. Weiss Instruments, Inc.
 - n. Weksler Glass Thermometer Corp.
 - o. WIKA Instrument Corporation.
 - p. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.
 - 3. Case: Liquid-filled type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.

- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Metal.
- 11. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and pistontype surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- H. Install remote-mounted pressure gages on panel.
- I. Install valve and snubber in piping for each pressure gage for fluids.
- J. Install thermometers in the following locations:
 - 1. Inlet and outlet of each water heater.
 - 2. Inlets and outlets of each domestic water heat exchanger.
 - 3. Inlet and outlet of each domestic hot-water storage tank.
 - 4. Inlet and outlet of each remote domestic water chiller.
- K. Install pressure gages in the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure-reducing valve.
 - 3. Suction and discharge of each domestic water pump.

- L. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- M. Adjust faces of meters and gages to proper angle for best visibility.

3.2 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each domestic water heater shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- B. Thermometers at inlets and outlets of each domestic water heat exchanger shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- C. Thermometers at inlet and outlet of each domestic hot-water storage tank shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- D. Thermometers at inlet and outlet of each remote domestic water chiller shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
- E. Thermometer stems shall be of length to match thermowell insertion length.

3.3 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
- B. Scale Range for Domestic Hot-Water Piping: 20 to 240 deg F.
- C. Scale Range for Domestic Cooled-Water Piping: 0 to 100 deg F.

3.4 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each water service into building shall be the following:
 - 1. Liquid-filled, direct-mounted, metal case.
- B. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be the following:
 - 1. Liquid-filled, direct-mounted, metal case.
- C. Pressure gages at suction and discharge of each domestic water pump shall be the following:
 - 1. Liquid-filled, direct-mounted, metal case.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Water Service Piping: 0 to 100 psi.

METERS AND GAGES FOR PLUMBING PIPING

B. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 22 05 19

SECTION 22 05 23.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Brass ball valves.
 - 2. Bronze ball valves.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. All piping, valves, and equipment for domestic water use shall comply with the reduction of lead in Drinking Water Act of 2011 which will be enforced January 4, 2014.
- C. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 3. ASME B16.18 for solder-joint connections.
 - 4. ASME B31.9 for building services piping valves.
- D. NSF Compliance: NSF 61 for valve materials for potable-water service.
- E. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- F. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- G. Valve Sizes: Same as upstream piping unless otherwise indicated.
- H. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 - 2. Handlever: For quarter-turn valves smaller than NPS 4.

- I. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.
 - 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

- A. One-Piece, Brass Ball Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. KITZ Corporation.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Forged brass or bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Brass or stainless steel.
 - h. Ball: Chrome-plated brass or stainless steel.
 - i. Port: Reduced.
- B. Two-Piece, Brass Ball Valves with Full Port and Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Conbraco Industries, Inc.
 - c. Crane; Crane Energy Flow Solutions.
 - d. DynaQuip Controls.
 - e. Hammond Valve.
 - f. Jomar Valve.
 - g. KITZ Corporation.
 - h. Legend Valve.
 - i. Marwin Valve; Richards Industries.
 - j. Milwaukee Valve Company.
 - k. NIBCO INC.
 - I. Red-White Valve Corporation.
 - m. Stockham; Crane Energy Flow Solutions.
 - n. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Forged brass.

- e. Ends: Threaded and soldered.
- f. Seats: PTFE.
- g. Stem: Brass.
- h. Ball: Chrome-plated brass.
- i. Port: Full.
- C. Two-Piece, Brass Ball Valves with Regular Port and Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hammond Valve.
 - b. Legend Valve.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.

2.3 BRONZE BALL VALVES

- A. One-Piece, Bronze Ball Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. NIBCO INC.
 - c. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze.
 - h. Ball: Chrome-plated brass.
 - i. Port: Reduced.
- B. Two-Piece, Bronze Ball Valves with Full Port, and Bronze or Brass Trim:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Hammond Valve.
 - d. Lance Valves.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded and soldered.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Full.
- C. Two-Piece, Bronze Ball Valves with Regular Port and Bronze or Brass Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. DynaQuip Controls.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: Two piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze or brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Regular.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Locate valves above accessible ceilings. If this is not possible, provide

3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.3 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. One piece, brass ball valve.
 - 3. One piece, bronze ball valve with bronze trim.
 - 4. Two-piece, brass ball valves with full port and brass trim.
 - 5. Two-piece, bronze ball valves with full port and bronze or brass trim.

3.4 HIGH-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 TO 200 PSIG)

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. One piece, brass ball valve.
 - 3. One piece, bronze ball valve with bronze trim.
 - 4. Two-piece, brass ball valves with full port and brass trim.
 - 5. Two-piece, bronze ball valves with full port and bronze or brass trim.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

- 1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
- One piece, brass ball valve. 2.
- 3.
- 4.
- One piece, bronze ball valve with bronze trim. Two-piece, brass ball valves with full port and brass trim. Two-piece, bronze ball valves with full port and bronze or brass trim. 5.

END OF SECTION 22 05 23.12

SECTION 22 05 23.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bronze swing check valves.
 - 2. Iron swing check valves.
 - 3. Iron swing check valves with closure control.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61.

PART 2 - PRODUCTS

- 2.1 GENERAL REQUIREMENTS FOR VALVES
 - A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

ASME Compliance:

- 1. ASME B1.20.1 for threads for threaded end valves.
- 2. ASME B16.1 for flanges on iron valves.
- 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 4. ASME B16.18 for solder joint.
- 5. ASME B31.9 for building services piping valves.
- B. NSF Compliance: NSF 61 for valve materials for potable-water service.
- C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Valve, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Hammond Valve.
 - d. NIBCO INC.
 - e. Red-White Valve Corporation.
 - f. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded or soldered. See valve schedule articles.
 - f. Disc: Bronze.
- B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. NIBCO INC.
 - d. Red-White Valve Corporation.
 - e. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded or soldered. See valve schedule articles.
 - f. Disc: PTFE.
- 2.3 IRON SWING CHECK VALVES
 - A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.

- b. Hammond Valve.
- c. NIBCO INC.
- d. Red-White Valve Corporation.
- e. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged or threaded. See valve schedule articles.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.
- B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Stockham; Crane Energy Flow Solutions.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged or threaded. See valve schedule articles.
 - f. Trim: Composition.
 - g. Seat Ring: Bronze.
 - h. Disc Holder: Bronze.
 - i. Disc: PTFE.
 - j. Gasket: Asbestos free.

2.4 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

- A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged or threaded. See valve schedule articles.
 - f. Trim: Bronze.

- g. Gasket: Asbestos free.
- h. Closure Control: Factory-installed exterior lever and spring.
- B. Class 125, Iron Swing Check Valves with Lever and Weight-Closure Control:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. NIBCO INC.
 - d. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged or threaded. See valve schedule articles.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.
 - h. Closure Control: Factory-installed exterior lever and weight.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install swing check valves for proper direction of flow in horizontal position with hinge pin level.
- F. Provide check valves at the discharge of each pump.

3.2 ADJUSTING

- A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.
- 3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS
 - A. If valve applications are not indicated, use the following:

- 1. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; metal-seat or resilient-seat check valves.
 - c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. End Connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or threaded.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged.
- 3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)
 - A. Pipe NPS 2 and Smaller:
 - 1. Horizontal and Vertical Applications: Bronze swing check valves, Class 125, nonmetallic disc with soldered or threaded end connections.
 - B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.
- 3.5 HIGH-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 TO 200 PSIG)
 - A. Pipe NPS 2 and Smaller:
 - 1. Horizontal and Vertical Applications: Bronze swing check valves, Class 125, nonmetallic disc with soldered or threaded end connections.
 - B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.

3.6 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze swing check valves, Class 125, bronze disc with soldered or threaded end connections.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron swing check valves, Class 125, metal seats with threaded or flanged end connections.

2. Iron swing check valves with closure control, Class 125, lever and spring with threaded or flanged end connections.

END OF SECTION 22 05 2314

SECTION 22 05 23.15 - GATE VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze gate valves.
 - 2. Iron gate valves.
 - 3. Chainwheels.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. NRS: Nonrising stem.
- C. OS&Y: Outside screw and yoke.
- D. RS: Rising stem.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61 and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set gate valves closed to prevent rattling.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder joint.
 - 5. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. RS Valves in Insulated Piping: With 2-inch stem extensions.
- H. Valve Bypass and Drain Connections: MSS SP-45.
- I. Where gate valves are specified, but will not fit due to large dimensions, provide ball valves. Butterfly valves will not be allowed.

2.2 IRON GATE VALVES

- A. Class 125, NRS, Iron Gate Valves:
 - 1. Manufactures
 - a. Crane; Crane Energy Flow Solutions.
 - b. Flo Fab inc.
 - c. Hammond Valve.
 - d. Jenkins Valves; Crane Energy Flow Solutions.
 - e. KITZ Corporation.
 - f. Legend Valve & Fitting, Inc.
 - g. Macomb Groups (The).
 - h. Milwaukee Valve Company.
 - i. NIBCO INC.
 - j. Powell Valves.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- k. Red-White Valve Corporation.
- I. Stockham; Crane Energy Flow Solutions.
- m. Watts; a Watts Water Technologies company.
- n. Zurn Industries, LLC
- 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: Gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.
- B. Class 125, OS&Y, Iron Gate Valves:
 - 1. Manufactures
 - a. Crane; Crane Energy Flow Solutions.
 - b. Flo Fab inc.
 - c. Hammond Valve.
 - d. Jenkins Valves; Crane Energy Flow Solutions.
 - e. KITZ Corporation.
 - f. Legend Valve & Fitting, Inc.
 - g. Macomb Groups (The).
 - h. Milwaukee Valve Company.
 - i. NIBCO INC.
 - j. Powell Valves.
 - k. Red-White Valve Corporation.
 - I. Stockham; Crane Energy Flow Solutions.
 - m. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: Gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Disc: Solid wedge.
 - g. Packing and Gasket: Asbestos free.

2.3 CHAINWHEELS

- A. Manufacturers
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.
- B. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to hand wheels.

- 1. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc or epoxy coating.
- 2. Chain: Hot-dip galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
- F. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. Use gate valves for shutoff service only.

- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. For Grooved-End Copper Tubing: Valve ends may be grooved.
- 3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
 - A. Pipe NPS 2-1/2 and Larger: Iron gate valves, Class 125, OS&Y with flanged ends.

END OF SECTION 22 05 23.15

SECTION 22 05 29 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Thermal-hanger shield inserts.
 - 4. Fastener systems.
 - 5. Pipe positioning systems.
 - 6. Equipment supports.

1.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 - 3. Design seismic-restraint hangers and supports for piping and equipment.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Equipment supports.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- B. Stainless-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.
- C. Copper Pipe Hangers:
 - 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 - 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of stainless steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 THERMAL-HANGER SHIELD INSERTS

- A. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless- steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- D. Fastener System Installation:

- 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- E. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- M. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:

- a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
- b. NPS 4: 12 inches long and 0.06 inch thick.
- c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
- d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
- e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

- 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09 91 23 "Interior Painting."
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizingrepair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports and metal trapeze pipe hangers and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel or corrosion-resistant attachments for hostile environment applications.
- G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- H. Use padded hangers for piping that is subject to scratching.
- I. Use thermal-hanger shield inserts for insulated piping and tubing.
- J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 7. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 8. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

- 9. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

- 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
- 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
- R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 22 05 29

SECTION 22 05 48.13 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Elastomeric isolation pads.
 - 2. Elastomeric isolation mounts.
 - 3. Restrained elastomeric isolation mounts.
 - 4. Open-spring isolators.
 - 5. Housed-spring isolators.
 - 6. Restrained-spring isolators.
 - 7. Housed-restrained-spring isolators.
 - 8. Pipe-riser resilient supports.
 - 9. Resilient pipe guides.
 - 10. Elastomeric hangers.
 - 11. Spring hangers.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each vibration isolation device.
 - 1. Include design calculations for selecting vibration isolators.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.

- 3. Size: Factory or field cut to match requirements of supported equipment.
- 4. Pad Material: Oil and water resistant with elastomeric properties.
- 5. Surface Pattern: Ribbed pattern.
- 6. Infused nonwoven cotton or synthetic fibers.
- 7. Load-bearing metal plates adhered to pads.

2.2 ELASTOMERIC ISOLATION MOUNTS

- A. Double-Deflection, Elastomeric Isolation Mounts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
 - 3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

- A. Restrained Elastomeric Isolation Mounts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Description: All-directional isolator with restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
 - a. Housing: Cast-ductile iron or welded steel.

b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
 - 7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.5 HOUSED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

- 6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Top housing with threaded mounting holes and internal leveling device.

2.6 RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Isolation.
 - h. Vibration Mountings & Controls, Inc.
 - 2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.
 - a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Top plate with threaded mounting holes.
 - c. Internal leveling bolt that acts as blocking during installation.
 - 3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
 - 4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 6. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.7 HOUSED-RESTRAINED-SPRING ISOLATORS

- A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
- f. Vibration Eliminator Co., Inc.
- g. Vibration Isolation.
- h. Vibration Mountings & Controls, Inc.
- 2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 - a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 - b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
- 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
- 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
- 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
- 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 2.8 PIPE-RISER RESILIENT SUPPORT
 - A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene.
 - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 2. Maximum Load Per Support: 500 psigon isolation material providing equal isolation in all directions.

2.9 RESILIENT PIPE GUIDES

- A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene.
 - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.10 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.

- g. Vibration Mountings & Controls, Inc.
- 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
- 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.11 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Kinetics Noise Control, Inc.
 - d. Mason Industries, Inc.
 - e. Vibration Eliminator Co., Inc.
 - f. Vibration Isolation.
 - g. Vibration Mountings & Controls, Inc.
 - 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
 - 9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

PART 3 - EXECUTION

3.1 VIBRATION CONTROL DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 22 05 48.13

SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 3. Letter Color: White.
 - 4. Background Color: Black.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
- 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- 3. Letter Color: White.
- 4. Background Color: Black.
- 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 8. Fasteners: Stainless-steel rivets or self-tapping screws.
- 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Brady Corporation.
 - 2. Brimar Industries, Inc.
 - 3. Carlton Industries, LP.
 - 4. Champion America.
 - 5. Craftmark Pipe Markers.
 - 6. emedco.
 - 7. LEM Products Inc.
 - 8. Marking Sevices Inc.
 - 9. National Marker Company.
 - 10. Seton Identification Products.
 - 11. Stranco, Inc.

- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- C. Letter Color: Yellow.
- D. Background Color: Black.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- H. Fasteners: Stainless-steel rivets or self-tapping screws.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. Retain this article if these devices will identify some or all piping. Identification of piping by colorcoded painting is covered in "Pipe Label Installation" Article.
- B. Do not use pipe labels or plastic tapes for bare pipes conveying fluids at temperatures of 125 deg F (52 deg C) or higher.
- C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 - 2. Brady Corporation.
 - 3. Brimar Industries, Inc.
 - 4. Carlton Industries, LP.
 - 5. Champion America.
 - 6. Craftmark Pipe Markers.
 - 7. emedco.
 - 8. Kolbi Pipe Marker Co.
 - 9. LEM Products Inc.
 - 10. Marking Sevices Inc.
 - 11. Seton Identification Products.
- D. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- E. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- F. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

- G. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

PART 3 - EXECUTION

- 3.1 EQUIPMENT LABEL INSTALLATION
 - A. Install or permanently fasten labels on each major item of mechanical equipment.
 - B. Locate equipment labels where accessible and visible.

3.2 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Low-Pressure Compressed Air Piping:
 - a. Background: Safety blue.
 - b. Letter Colors: White.
 - 2. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.
 - 3. Sanitary Waste and Storm Drainage Piping:
 - a. Background Color: Safety black.
 - b. Letter Color: White.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

END OF SECTION 22 05 53

SECTION 22 07 19 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic hot-water piping.
 - 2. Domestic recirculating hot-water piping.
 - 3. Sanitary waste piping exposed to freezing conditions.
 - 4. Storm-water piping exposed to freezing conditions.
 - 5. Roof drains and rainwater leaders.
 - 6. Supplies and drains for handicap-accessible lavatories and sinks.
- B. Related Sections:
 - 1. Section 22 07 16 "Plumbing Equipment Insulation."

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail removable insulation at piping specialties, equipment connections, and access panels.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- B. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1. Supply and Drain Protective Shielding Guards: ICC A117.1.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Pittsburgh Corning Corporation.
 - 2. Special-Shaped Insulation: ASTM C 552, Type III.
 - 3. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 4. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
 - 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
- H. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aeroflex USA, Inc.
 - 2. Armacell LLC.
 - 3. K-Flex USA.
- I. Mineral-Fiber, Preformed Pipe Insulation:
- J. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Johns Manville; a Berkshire Hathaway company.
 - 2. Knauf Insulation.
 - 3. Manson Insulation Inc.
 - 4. Owens Corning.

- 5. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials.
- L. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armacell LLC.
 - 2. Nomaco Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
- B. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ramco Insulation, Inc.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
- C. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Foster Brand; H. B. Fuller Construction Products.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
- E. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aeroflex USA, Inc.
 - 2. Armacell LLC.
 - 3. Foster Brand; H. B. Fuller Construction Products.
 - K-Flex USA.
 - 5. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- F. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
- G. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Childers Brand; H. B. Fuller Construction Products.
 - 2. Eagle Bridges Marathon Industries.
 - 3. Foster Brand; H. B. Fuller Construction Products.

- 4. Mon-Eco Industries, Inc.
- 5. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- H. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
- I. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Childers Brand; H. B. Fuller Construction Products.
 - 2. Eagle Bridges Marathon Industries.
 - 3. Foster Brand; H. B. Fuller Construction Products.
 - 4. Mon-Eco Industries, Inc.
 - 5. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- J. PVC Jacket Adhesive: Compatible with PVC jacket.
- K. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Dow Corning Corporation.
 - 2. Johns Manville; a Berkshire Hathaway company.
 - 3. P.I.C. Plastics, Inc.
 - 4. Speedline Corporation.
 - 5. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products.
 - b. Vimasco Corporation.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Childers Brand; H. B. Fuller Construction Products.
- b. Eagle Bridges Marathon Industries.
- c. Foster Brand; H. B. Fuller Construction Products.
- d. Mon-Eco Industries, Inc.
- e. Vimasco Corporation.
- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.5 SEALANTS

- A. Joint Sealants:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Childers Brand; H. B. Fuller Construction Products.
 - 2. Eagle Bridges Marathon Industries.
 - 3. Foster Brand; H. B. Fuller Construction Products.
 - 4. Mon-Eco Industries, Inc.
 - 5. Pittsburgh Corning Corporation.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- C. FSK and Metal Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factoryapplied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Foster Brand; H. B. Fuller Construction Products.
 - 2. Vimasco Corporation.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. P.I.C. Plastics, Inc.
 - c. Proto Corporation.
 - d. Speedline Corporation.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- C. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. ITW Insulation Systems; Illinois Tool Works, Inc.
 - c. RPR Products, Inc.
- 2. Factory cut and rolled to size.
- 3. Finish and thickness are indicated in field-applied jacket schedules.
- 4. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
- 5. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
- 6. Factory-Fabricated Fitting Covers:
 - a. Same material, finish, and thickness as jacket.
 - b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - c. Tee covers.
 - d. Flange and union covers.
 - e. End caps.
 - f. Beveled collars.
 - g. Valve covers.
 - h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Underground Direct-Buried Jacket: 125-mil- thick vapor barrier and waterproofing membrane consisting of a rubberized bituminous resin reinforced with a woven-glass fiber or polyester scrim and laminated aluminum foil.
- E. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pittsburgh Corning Corporation.
 - 2. Polyguard Products, Inc.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Venture Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Venture Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Compac Corporation.
 - b. Ideal Tape Co., Inc,; an American Biltrite company.
 - c. Venture Tape.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Venture Tape.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ITW Insulation Systems; Illinois Tool Works, Inc.
 - 2. RPR Products, Inc.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.062-inch soft-annealed, galvanized steel.
- E. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. C & F Wire.

2.11 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Engineered Brass Company.
 - b. Insul-Tect Products Co.
 - c. McGuire Manufacturing.
 - d. Plumberex Specialty Products, Inc.
 - e. Truebro.
 - f. Zurn Industries, LLC.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

- 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for aboveambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at

these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellularglass insulation. Secure insulation materials with wire or bands.

- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.

- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of polyolefin pipe insulation.

- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

System	Pipe Size and Loca- tion	Insulation Type and Thickness
Storm Drainage Piping, Roof Drain and Sumps Including overflow and standard drains	Above Ground Pip- ing	¹ / ₂ -inch fiberglass Insulation with ASJ Vapor Barrier Jacket
Domestic Hot and Cold Water Piping	Under Floor Piping	¹ / ₂ -inch fire retardant plastic foam insulation
Domestic Hot and Cold Water Piping	Piping in Building 2- inches and smaller	1-inch fiberglass insulation with ASJ Vapor barrier jacket
Domestic Hot and Cold Water Piping	Piping in Building 2- 1/2 inches and larg- er	1-1/2 inch fiberglass insulation with ASJ vapor barrier jacket
Domestic Hot Water Recirculation Piping	Piping in Building	1-inch Fiberglass insulation with ASJ Vapor barrier jacket

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Sanitary Waste and Storm drain Piping Where Heat Tracing Is Installed: Insulation shall be one of the following:
 - 1. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.

3.15 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. None.
- D. Piping, Exposed:
 - 1. None.
 - 2. PVC: 20 mils thick.

3.16 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Aluminum, Smooth: 0.024 inch thick.
- D. Piping, Exposed:
 - 1. Aluminum, Smooth: 0.024 inch thick.

3.17 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 22 07 19

SECTION 22 11 13 - FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes water-distribution piping and related components outside the building for water service and fire-service mains.
- B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.
- B. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Regulatory Requirements:
 - 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 - 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 - 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

- B. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- C. Comply with ASTM F 645 for selection, design, and installation of thermoplastic water piping.
- D. Comply with FMG's "Approval Guide" or UL's "Fire Protection Equipment Directory" for fire-servicemain products.
- E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.
- F. NSF Compliance:
 - 1. Comply with NSF 14 for plastic potable-water-service piping.
 - 2. Comply with NSF 61 for materials for water-service piping and specialties for domestic water.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 - 1. Ensure that valves are dry and internally protected against rust and corrosion.
 - 2. Protect valves against damage to threaded ends and flange faces.
 - 3. Set valves in best position for handling. Set valves closed to prevent rattling.
- B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 - 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 - Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.
- C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.
- F. Protect flanges, fittings, and specialties from moisture and dirt.
- G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.

1.8 COORDINATION

A. Coordinate connection to water main with utility company.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

- A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.
 - 1. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wroughtcopper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
- B. Hard Copper Tube: ASTM B 88, Type K, water tube, drawn temper.
 - 1. Copper, Solder-Joint Fittings: ASME B16.18, cast-copper-alloy or ASME B16.22, wroughtcopper, solder-joint pressure type. Furnish only wrought-copper fittings if indicated.
- C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.
- D. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metalto-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.
 - 1. Grooved-End, Ductile-Iron Pipe Appurtenances:
 - a. Grooved-End, Ductile-Iron Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron castings with dimensions matching pipe.
 - b. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
- D. Flanges: ASME 16.1, Class 125, cast iron.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.3 PVC PIPE AND FITTINGS

- A. PVC, Schedule 40 Pipe: ASTM D 1785.
 - 1. PVC, Schedule 40 Socket Fittings: ASTM D 2466.
- B. PVC, Schedule 80 Pipe: ASTM D 1785.
 - 1. PVC, Schedule 80 Socket Fittings: ASTM D 2467.
 - 2. PVC, Schedule 80 Threaded Fittings: ASTM D 2464.
- C. PVC, AWWA Pipe: AWWA C900, Class 150 and Class 200, with bell end with gasket, and with spigot end.
 - 1. Comply with UL 1285 for fire-service mains if indicated.
 - 2. PVC Fabricated Fittings: AWWA C900, Class 150 and Class 200, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 4. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Gaskets: AWWA C111, rubber.
 - 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 JOINING MATERIALS

- A. Refer to Section 22 05 00 "Common Work Results for Plumbing" for commonly used joining materials.
- B. Brazing Filler Metals: AWS A5.8, BCuP Series.
- C. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.
- D. Plastic Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.

2.5 PIPING SPECIALTIES

- A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.
- B. Tubular-Sleeve Pipe Couplings:
 - 1. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners and with ends of same sizes as piping to be joined.

a. Standard: AWWA C219.

2.6 GATE VALVES

- A. AWWA, Cast-Iron Gate Valves:
 - 1. American Cast Iron Pipe Company.
 - 2. Clow Valve Company; a subsidiary of McWane, Inc.
 - 3. Crane; Crane Energy Flow Solutions.
 - 4. East Jordan Iron Works, Inc.
 - 5. Flomatic Corporation.
 - 6. Kennedy Valve Company; a division of McWane, Inc.
 - 7. M & H Valve Company; a division of McWane, Inc.
 - 8. McWane, Inc.
 - 9. Mueller Co.
 - 10. NIBCO INC.
 - 11. Tyler Pipe; a subsidiary of McWane Inc.
 - 12. U.S. Pipe and Foundry Company.
 - 13. Nonrising-Stem, Metal-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with cast-iron or bronze double-disc gate, bronze gate rings, bronze stem, and stem nut.
 - 1) Standard: AWWA C500.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
 - 14. Nonrising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
 - 15. Nonrising-Stem, High-Pressure, Resilient-Seated Gate Valves:
 - a. Description: Ductile-iron body and bonnet; with bronze or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 250 psig.
 - 3) End Connections: Push on or mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.
 - 16. OS&Y, Rising-Stem, Metal-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet, with cast-iron double disc, bronze disc and seat rings, and bronze stem.

- 1) Standard: AWWA C500.
- 2) Minimum Pressure Rating: 200 psig.
- 3) End Connections: Flanged.
- 17. OS&Y, Rising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Cast- or ductile-iron body and bonnet, with bronze or gray- or ductile-iron gate, resilient seats, and bronze stem.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 200 psig.
 - 3) End Connections: Flanged.
- B. UL/FMG, Cast-Iron Gate Valves:
 - a. American Cast Iron Pipe Company.
 - b. Clow Valve Company; a subsidiary of McWane, Inc.
 - c. Crane; Crane Energy Flow Solutions.
 - d. Kennedy Valve Company; a division of McWane, Inc.
 - e. M & H Valve Company; a division of McWane, Inc.
 - f. McWane, Inc.
 - g. Mueller Co.
 - h. NIBCO INC.
 - i. Stockham; Crane Energy Flow Solutions.
 - j. U.S. Pipe and Foundry Company.
 - 2. UL/FMG, Nonrising-Stem Gate Valves:
 - a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Flanged.
 - 3. OS&Y, Rising-Stem Gate Valves:
 - a. Description: Iron body and bonnet and bronze seating material.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Flanged.
- C. Bronze Gate Valves:
 - 1. Crane; Crane Energy Flow Solutions.
 - 2. Hammond Valve.
 - 3. Jenkins Valves; Crane Energy Flow Solutions.
 - 4. Milwaukee Valve Company.
 - 5. NIBCO INC.
 - 6. Red-White Valve Corporation.
 - 7. Stockham; Crane Energy Flow Solutions.
 - 8. Zurn Industries, LLC
 - 9. OS&Y, Rising-Stem Gate Valves:

- a. Description: Bronze body and bonnet and bronze stem.
 - 1) Standards: UL 262 and FMG approved.
 - 2) Minimum Pressure Rating: 175 psig.
 - 3) End Connections: Threaded.
- 10. Nonrising-Stem Gate Valves:
 - a. Description: Class 125, Type 1, bronze with solid wedge, threaded ends, and malleableiron handwheel.
 - 1) Standard: MSS SP-80.

2.7 GATE VALVE ACCESSORIES AND SPECIALTIES

- A. Tapping-Sleeve Assemblies:
 - 1. American Cast Iron Pipe Company.
 - 2. Clow Valve Company; a subsidiary of McWane, Inc.
 - 3. East Jordan Iron Works, Inc.
 - 4. Flowserve Corporation.
 - 5. Kennedy Valve Company; a division of McWane, Inc.
 - 6. M & H Valve Company; a division of McWane, Inc.
 - 7. McWane, Inc.
 - 8. Mueller Co.
 - 9. U.S. Pipe and Foundry Company.
 - 10. Description: Sleeve and valve compatible with drilling machine.
 - a. Standard: MSS SP-60.
 - b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 - c. Valve: AWWA, cast-iron, nonrising-stem, metal-seated gate valve with one raised face flange mating tapping-sleeve flange.
- B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
 - 1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.
- C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.8 WATER METERS

- A. Water meters will be furnished by utility company.
- B. Turbine-Type Water Meters:
 - 1. Description:

- a. Standard: AWWA C701.
- b. Registration: Flow in gallons.
- C. Compound-Type Water Meters:
 - 1. Description:
 - a. Standard: AWWA C702.
 - b. Registration: Flow in gallons.

2.9 BACKFLOW PREVENTERS

- A. Reduced-Pressure-Principle Backflow Preventers:
 - 1. Ames Fire & Waterworks.
 - 2. Conbraco Industries, Inc.
 - 3. FEBCO.
 - 4. Flowmatic Corporation.
 - 5. Watts; a Watts Water Technologies company.
 - 6. Wilkins.
 - 7. Standard: ASSE 1013.
 - 8. Operation: Continuous-pressure applications.
 - 9. Pressure Loss: 12 psig maximum, through middle 1/3 of flow range.
 - 10. Size: 3 Inch
 - 11. Design Flow Rate: 160 gpm.
 - 12. Selected Unit Flow Range Limits:
 - 13. Pressure Loss at Design Flow Rate: 12 psig for NPS 2 and smaller; 12 psig for NPS 2-1/2 and larger.
 - 14. Body: Bronze for NPS 2 and smaller; cast iron with interior lining complying with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 - 15. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 16. Configuration: Designed for horizontal, straight through flow.
 - 17. Accessories:
 - a. Valves: Ball type with threaded ends on inlet and outlet of NPS 2 and smaller; OS&Y gate type with flanged ends on inlet and outlet of NPS 2-1/2 and larger.
 - b. Air-Gap Fitting: ASME A112.1.2, matching backflow preventer connection.

2.10 FIRE DEPARTMENT CONNECTIONS

- A. Fire Department Connections:
 - 1. Elkhart Brass Mfg. Co., Inc.
 - 2. Fire End & Croker Corporation.
 - 3. Guardian Fire Equipment, Inc.
 - 4. Kidde Fire Fighting; A UTC Business Unit.
 - 5. Potter Roemer LLC.
 - 6. Description: Freestanding, with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, and threaded bottom outlet. Include lugged caps,

gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18-inch- high brass sleeve; and round escutcheon plate.

- a. Standard: UL 405.
- b. Connections: Two NPS 2-1/2 inlets and one NPS 4 outlet.
- c. Inlet Alignment: Inline, horizontal.
- d. Finish Including Sleeve: Polished chrome-plated.
- e. Escutcheon Plate Marking: "AUTO SPKR."

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATIONS

- A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.
- B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
- C. Do not use flanges or unions for underground piping.
- D. Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.
- E. Underground water-service piping NPS 3 to NPS 8 shall be any of the following:
 - 1. Ductile-iron, mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.

3.3 VALVE APPLICATIONS

- A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 and smaller installation.
- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Underground Valves, NPS 3 and Larger: AWWA, cast-iron, nonrising-stem, metal-seated gate valves with valve box.

3.4 PIPING SYSTEMS - COMMON REQUIREMENTS

A. See Section 22 05 00 "Common Work Results for Plumbing" for piping-system common requirements.

3.5 PIPING INSTALLATION

- A. Water-Main Connection: Arrange with utility company for tap of size and in location indicated in water main.
- B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.
- C. Make connections larger than NPS 2 with tapping machine according to the following:
 - 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 - 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 - 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 - 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
- D. Make connections NPS 2 and smaller with drilling machine according to the following:
 - 1. Install service-saddle assemblies and corporation valves in size, quantity, and arrangement required by utility company standards.
 - 2. Install service-saddle assemblies on water-service pipe to be tapped. Position outlets for corporation valves.
 - 3. Use drilling machine compatible with service-saddle assemblies and corporation valves. Drill hole in main. Remove drilling machine and connect water-service piping.
 - 4. Install corporation valves into service-saddle assemblies.
 - 5. Install manifold for multiple taps in water main.
 - 6. Install curb valve in water-service piping with head pointing up and with service box.
- E. Comply with NFPA 24 for fire-service-main piping materials and installation.
 - 1. Install copper tube and fittings according to CDA's "Copper Tube Handbook."
- F. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
- G. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- H. Bury piping with depth of cover over top at least, with top at least 72 inches below level of maximum frost penetration, and according to the following:
- I. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 - 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.
- J. Sleeves are specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
- K. Mechanical sleeve seals are specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
- L. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.
- M. See Section 21 12 00 "Fire-Suppression Standpipes," Section 21 13 13 "Wet-Pipe Sprinkler Systems," and Section 21 13 16 "Dry-Pipe Sprinkler Systems" for fire-suppression-water piping inside the building.
- N. See Section 22 11 16 "Domestic Water Piping" for potable-water piping inside the building.

3.6 JOINT CONSTRUCTION

- A. See Section 22 05 00 "Common Work Results for Plumbing" for basic piping joint construction.
- B. Make pipe joints according to the following:
 - 1. Copper-Tubing, Pressure-Sealed Joints: Use proprietary crimping tool and procedure recommended by copper, pressure-seal-fitting manufacturer.
 - 2. Ductile-Iron Piping, Gasketed Joints for Water-Service Piping: AWWA C600 and AWWA M41.
 - 3. Ductile-Iron Piping, Gasketed Joints for Fire-Service-Main Piping: UL 194.
 - 4. Ductile-Iron Piping, Grooved Joints: Cut-groove pipe. Assemble joints with grooved-end, ductile-iron-piping couplings, gaskets, lubricant, and bolts according to coupling manufacturer's written instructions.
 - 5. PVC Piping Gasketed Joints: Use joining materials according to AWWA C900. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139 and pipe manufacturer's written instructions.

3.7 ANCHORAGE INSTALLATION

- A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:
 - 1. Concrete thrust blocks.
 - 2. Locking mechanical joints.
 - 3. Set-screw mechanical retainer glands.
 - 4. Bolted flanged joints.
 - 5. Heat-fused joints.
 - 6. Pipe clamps and tie rods.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 - 1. Gasketed-Joint, Ductile-Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Bonded-Joint Fiberglass, Water-Service Piping: According to AWWA M45.
 - 4. Fire-Service-Main Piping: According to NFPA 24.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.8 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

- B. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.
- C. MSS Valves: Install as component of connected piping system.
- D. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

3.9 BACKFLOW PREVENTER INSTALLATION

- A. Install backflow preventers of type, size, and capacity indicated. Include valves and test cocks. Install according to requirements of plumbing and health department and authorities having jurisdiction.
- B. Do not install backflow preventers that have relief drain in vault or in other spaces subject to flooding.
- C. Do not install bypass piping around backflow preventers.
- D. Support NPS 2-1/2 and larger backflow preventers, valves, and piping near floor and on brick or concrete piers.

3.10 FIRE DEPARTMENT CONNECTION INSTALLATION

- A. Install ball drip valves at each check valve for fire department connection to mains.
- B. Install protective pipe bollards on two sides of each fire department connection. Pipe bollards are specified in Section 05 50 00 "Metal Fabrications."

3.11 CONNECTIONS

- A. See Section 22 05 00 "Common Work Results for Plumbing" for piping connections to valves and equipment.
- B. Connect water-distribution piping to interior domestic water and fire-suppression piping.

3.12 FIELD QUALITY CONTROL

- A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 - Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- C. Prepare reports of testing activities.

3.13 IDENTIFICATION

- A. Install continuous underground warning tape during backfilling of trench for underground waterdistribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 31 20 00 "Earth Moving."
- B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 33 05 00 "Common Work Results for Utilities" for identifying devices.

3.14 CLEANING

- A. Clean and disinfect water-distribution piping as follows:
 - 1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
 - c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- B. Prepare reports of purging and disinfecting activities.

END OF SECTION 22 11 13

SECTION 22 11 16 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.
- B. Related Requirements:
 - 1. Section 22 11 13 "Facility Water Distribution Piping" for water-service piping outside the building from source to the point where water-service piping enters the building.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.3 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."
- C. PEX, CPVC, or PVC materials are NOT permitted to be used in the return air plenum areas as a general rule, unless their flame and smoke spread ratings meet the 25/50 limits defined for plenum use. Any/All materials within the return air plenums shall be plenum rated.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- B. Soft Copper Tube: ASTM B 88, Type K water tube, annealed temper.
- C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

- D. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- F. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.
- G. Copper Pressure-Seal-Joint Fittings:
 - 1. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
 - Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, Oring seal in each end.
- H. Copper Push-on-Joint Fittings:
 - 1. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22.
 - 2. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe:
 - 1. AWWA C151/A21.51, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Standard-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C110/A21.10, ductile or gray iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- C. Compact-Pattern, Mechanical-Joint Fittings:
 - 1. AWWA C153/A21.53, ductile iron.
 - 2. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 GALVANIZED-STEEL PIPE AND FITTINGS

- A. Galvanized-Steel Pipe:
 - 1. ASTM A 53/A 53M, Type E, Grade B, Standard Weight.
 - 2. Include ends matching joining method.

- B. Galvanized-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106/A 106M, Standard Weight, seamless steel pipe with threaded ends.
- C. Galvanized, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- D. Malleable-Iron Unions:
 - 1. ASME B16.39, Class 150.
 - 2. Hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal, bronze seating surface.
 - 4. Threaded ends.
- E. Flanges: ASME B16.1, Class 125, cast iron.
- 2.5 CPVC PIPING
 - A. CPVC Pipe: ASTM F 441/F 441M, Schedule 40.
 - 1. CPVC Socket Fittings: ASTM F 438 for Schedule 40.
 - 2. CPVC Threaded Fittings: ASTM F 437, Schedule 80.
 - B. CPVC Piping System: ASTM D 2846/D 2846M, SDR 11, pipe and socket fittings.
 - C. CPVC Tubing System: ASTM D 2846/D 2846M, SDR 11, tube and socket fittings.

2.6 PEX TUBE AND FITTINGS

- A. PEX Distribution System: ASTM F 877, SDR 9 tubing.
- B. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions.
- C. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 877; with plastic or corrosion-resistant-metal valve for each outlet.

2.7 PVC PIPE AND FITTINGS

- A. PVC Pipe: ASTM D 1785, Schedule 40.
- B. PVC Socket Fittings: ASTM D 2466 for Schedule 40 and ASTM D 2467 for Schedule 80.
- C. PVC Schedule 80 Threaded Fittings: ASTM D 2464.

2.8 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.

- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.
- F. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493.
 - 1. CPVC solvent cement shall have a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- G. Solvent Cements for Joining PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- H. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.9 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Plastic-to-Metal Transition Fittings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Charlotte Pipe and Foundry Company.
 - b. Harvel Plastics, Inc.
 - c. Spears Manufacturing Company.
 - 2. Description:
 - a. CPVC or PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions.
 - b. One end with threaded brass insert and one solvent-cement-socket or threaded end.
- D. Plastic-to-Metal Transition Unions:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Colonial Engineering, Inc.
 - b. NIBCO INC.
 - c. Spears Manufacturing Company.
- 2. Description:
 - a. CPVC or PVC four-part union.
 - b. Brass or stainless-steel threaded end.
 - c. Solvent-cement-joint or threaded plastic end.
 - d. Rubber O-ring.
 - e. Union nut.

2.10 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Capitol Manufacturing Company.
 - c. Central Plastics Company.
 - d. Hart Industries International, Inc.
 - e. Jomar Valve.
 - f. Matco-Norca.
 - g. Watts; a Watts Water Technologies company.
 - h. Wilkins.
 - i. Zurn Industries, LLC.
 - 2. Standard: ASSE 1079.
 - 3. Pressure Rating: 150 psig.
 - 4. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Capitol Manufacturing Company.
 - b. Central Plastics Company.
 - c. Matco-Norca.
 - d. Watts; a Watts Water Technologies company.
 - e. Wilkins.
 - f. Zurn Industries, LLC.
 - 2. Standard: ASSE 1079.
 - 3. Factory-fabricated, bolted, companion-flange assembly.

- 4. Pressure Rating: 150 psig.
- 5. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Nonconducting materials for field assembly of companion flanges.
 - 3. Pressure Rating: 150 psig.
 - 4. Gasket: Neoprene or phenolic.
 - 5. Bolt Sleeves: Phenolic or polyethylene.
 - 6. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elster Perfection Corporation.
 - b. Grinnell Mechanical Products.
 - c. Matco-Norca.
 - d. Precision Plumbing Products, Inc.
 - e. Victaulic Company.
 - 2. Standard: IAPMO PS 66.
 - 3. Electroplated steel nipple complying with ASTM F 1545.
 - 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 5. End Connections: Male threaded or grooved.
 - 6. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Division 2 "Earth work" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 11 19 "Domestic Water Piping Specialties."
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 22 11 19 "Domestic Water Piping Specialties."
- G. Install domestic water piping level without pitch and plumb.
- H. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- I. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- J. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- K. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- L. Install piping to permit valve servicing.
- M. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- N. Install piping free of sags and bends.
- O. Install fittings for changes in direction and branch connections.
- P. Install PEX piping with loop at each change of direction of more than 90 degrees.
- Q. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- R. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping."
- S. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 11 23 "Domestic Water Pumps."
- T. Install thermometers on inlet and outlet piping from each water heater. Comply with requirements for thermometers in Section 22 05 19 "Meters and Gages for Plumbing Piping."
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."

- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- H. Joint Construction for Solvent-Cemented Plastic Piping: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. Apply primer.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Piping: Join according to ASTM D 2855.
- I. Joints for PEX Piping: Join according to ASTM F 1807.
- J. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:

- 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
- 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.
- C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.5 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger, support products, and installation in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.
- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:

- 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
- 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
- 3. NPS 2: 10 feet with 3/8-inch rod.
- 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
- 5. NPS 3 and NPS 3-1/2: 12 feet with 1/2-inch rod.
- 6. NPS 4 and NPS 5: 12 feet with 5/8-inch rod.
- 7. NPS 6: 12 feet with 3/4-inch rod.
- 8. NPS 8 to NPS 12: 12 feet with 7/8-inch rod.
- G. Install supports for vertical steel piping every 15 feet.
- H. Install vinyl-coated hangers for CPVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 36 inches with 3/8-inch rod.
 - 2. NPS 1-1/4 to NPS 2: 48 inches with 3/8-inch rod.
 - 3. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 4. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 5. NPS 6: 48 inches with 3/4-inch rod.
 - 6. NPS 8: 48 inches with 7/8-inch rod.
- I. Install supports for vertical CPVC piping every 60 inches for NPS 1 and smaller, and every 72 inches for NPS 1-1/4 and larger.
- J. Install vinyl-coated hangers for PEX piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1 and Smaller: 32 inches with 3/8-inch rod.
- K. Install hangers for vertical PEX piping every 48 inches.
- L. Install vinyl-coated hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 2 and Smaller: 48 inches with 3/8-inch rod.
 - 2. NPS 2-1/2 to NPS 3-1/2: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6: 48 inches with 3/4-inch rod.
 - 5. NPS 8: 48 inches with 7/8-inch rod.
- M. Install supports for vertical PVC piping every 48 inches.
- N. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
 - 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
 - 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.8 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 22 05 53 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.9 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 - 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.

- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.10 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.11 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.12 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be one of the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.
- E. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be one of the following:
 - 1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings; and brazed joints.
 - 2. Plain-end, ductile-iron pipe; grooved-joint, ductile-iron-pipe appurtenances; and grooved joints.
- F. Aboveground domestic water piping, NPS 8 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 - 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.
- G. Aboveground domestic water piping, NPS 1 and smaller, shall be one of the following:
 - PEX Distribution System (NOT FOR USE IN PLENUM UNLESS COMPLIANT WITH PLENUM 25/50 RATINGS per ASTME84 and UL 723): ASTM F 877, SDR 9 tubing. Fittings for PEX Tube: ASTM F 1807, metal-insert type with copper or stainless-steel crimp rings and matching PEX tube dimensions. Manifold: Multiple-outlet, plastic or corrosion-resistant-metal assembly complying with ASTM F 877; with plastic or corrosion-resistant-metal valve for each outlet.
 - 2. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.
 - 3. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

END OF SECTION 22 11 16

SECTION 22 11 19 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Vacuum breakers.
 - 2. Backflow preventers.
 - 3. Water pressure-reducing valves.
 - 4. Balancing valves.
 - 5. Temperature-actuated, water mixing valves.
 - 6. Strainers.
 - 7. Hose bibbs.
 - 8. Wall hydrants.
 - 9. Drain valves.
 - 10. Water-hammer arresters.
 - 11. Trap-seal primer valves.
- B. Related Requirements:
 - 1. Section 22 05 19 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
 - 2. Section 22 11 16 "Domestic Water Piping" for water meters.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 and NSF 14. Mark "NSF-pw" on plastic piping components.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Standard: ASSE 1001.
 - 2. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 3. Body: Bronze.
 - 4. Inlet and Outlet Connections: Threaded.
 - 5. Finish: Chrome plated.
- B. Hose-Connection Vacuum Breakers:
 - 1. Standard: ASSE 1011.
 - 2. Body: Bronze, nonremovable, with manual drain.
 - 3. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
 - 4. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

- A. Intermediate Atmospheric-Vent Backflow Preventers:
 - 1. Standard: ASSE 1012.
 - 2. Operation: Continuous-pressure applications.
 - 3. Size: NPS 1/2 and NPS 3/4.
 - 4. Body: Bronze.
 - 5. End Connections: Union, solder joint.
 - 6. Finish: Rough bronze.
- B. Double-Check, Backflow-Prevention Assemblies:
 - 1. Standard: ASSE 1015.
 - 2. Operation: Continuous-pressure applications unless otherwise indicated.
 - 3. Pressure Loss: 5 psig maximum, through middle third of flow range.
 - 4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
 - 5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 6. Configuration: Designed for horizontal, straight-through flow.
 - 7. Accessories:
 - a. ValvesNPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. ValvesNPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 BALANCING VALVES

A. Memory-Stop Balancing Valves:

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Hammond Valve.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Red-White Valve Corporation.
- 2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
- 3. Pressure Rating: 400-psig minimum CWP.
- 4. Size: NPS 2 or smaller.
- 5. Body: Copper alloy.
- 6. Port: Standard or full port.
- 7. Ball: Chrome-plated brass.
- 8. Seats and Seals: Replaceable.
- 9. End Connections: Solder joint or threaded.
- 10. Handle: Vinyl-covered steel with memory-setting device.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

- A. Water-Temperature Limiting Devices:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong International, Inc.
 - b. Cash Acme.
 - c. Conbraco Industries, Inc.
 - d. Honeywell Water Controls.
 - e. Legend Valve.
 - f. Leonard Valve Company.
 - g. Powers.
 - h. Symmons Industries, Inc.
 - i. TACO Incorporated.
 - j. Watts; a Watts Water Technologies company.
 - k. Zurn Industries, LLC.
 - 2. Standard: ASSE 1017.
 - 3. Pressure Rating: 125 psig.
 - 4. Type: Thermostatically controlled, water mixing valve.
 - 5. Material: Bronze body with corrosion-resistant interior components.
 - 6. Connections: Threaded union inlets and outlet.
 - 7. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 - 8. Tempered-Water Setting: 110 deg F.
 - 9. Tempered-Water Design Flow Rate: .
 - 10. Valve Finish: Rough bronze.
- B. Primary, Thermostatic, Water Mixing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Armstrong International, Inc.
- b. Lawler Manufacturing Company, Inc.
- c. Leonard Valve Company.
- d. Powers.
- e. Symmons Industries, Inc.
- f. Zurn Industries, LLC.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 125 psigminimum unless otherwise indicated.
- 4. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
- 5. Material: Bronze body with corrosion-resistant interior components.
- 6. Connections: Threaded union inlets and outlet.
- 7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
- 8. Tempered-Water Setting: 110 deg F.
- 9. Tempered-Water Design Flow Rate: .
- 10. Selected Valve Flow Rate at 45-psig Pressure Drop: .
- 11. Pressure Drop at Design Flow Rate: .
- 12. Valve Finish: Rough bronze.
- 13. Piping Finish: Copper.
- 14. Cabinet: Factory fabricated, stainless steel, for surface mounting and with hinged, stainlesssteel door.
- 2.7 STRAINERS FOR DOMESTIC WATER PIPING
 - A. Y-Pattern Strainers:
 - 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
 - 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
 - 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
 - 4. Screen: Stainless steel with round perforations unless otherwise indicated.
 - 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.020 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
 - c. Strainers NPS 5 and Larger: 0.10 inch.
 - 6. Drain: Factory-installed, hose-end drain valve.
- 2.8 HOSE BIBBS (Drawing Reference WH-1)
 - A. Hose Bibbs :
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig.
 - 7. Vacuum Breaker: Integral nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
 - 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.

- 9. Finish for Service Areas: Chrome or nickel plated.
- 10. Finish for Finished Rooms: Chrome or nickel plated.
- 11. Operation for Equipment Rooms: Wheel handle or operating key.
- 12. Operation for Service Areas: Wheel handle.
- 13. Operation for Finished Rooms: Operating key.
- 14. Include operating key with each operating-key hose bibb.
- 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.9 WALL HYDRANTS (Drawing Reference HB-1 & HB-2)

- A. Nonfreeze Wall Hydrants:
 - 1. Standard: ASME A112.21.3M for exposed-outlet, self-draining wall hydrants.
 - 2. Pressure Rating: 125 psig.
 - 3. Operation: Loose key.
 - 4. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
 - 5. Inlet: NPS 3/4 or NPS 1.
 - 6. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
 - 7. Box: Deep, flush mounted with cover.
 - 8. Box and Cover Finish: Polished nickel bronze.
 - 9. Outlet: Exposed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
 - 10. Nozzle and Wall-Plate Finish: Polished nickel bronze.
 - 11. Operating Keys(s): One with each wall hydrant.

2.10 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves:
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.
 - 4. Body: Copper alloy.
 - 5. Ball: Chrome-plated brass.
 - 6. Seats and Seals: Replaceable.
 - 7. Handle: Vinyl-covered steel.
 - 8. Inlet: Threaded or solder joint.
 - 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.11 WATER-HAMMER ARRESTERS

- A. Water-Hammer Arresters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Josam Company.
 - c. MIFAB, Inc.

- d. Precision Plumbing Products, Inc.
- e. Sioux Chief Manufacturing Company, Inc.
- f. Smith, Jay R. Mfg. Co.
- g. Tyler Pipe; a subsidiary of McWane Inc.
- h. Watts; a Watts Water Technologies company.
- i. Zurn Industries, LLC.
- 2. Standard: ASSE 1010 or PDI-WH 201.
- 3. Type: Copper tube with piston.
- 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.12 TRAP-SEAL PRIMER DEVICE

- A. Supply-Type, Trap-Seal Primer Device:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MIFAB, Inc.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Smith, Jay R. Mfg. Co.
 - e. Watts; a Watts Water Technologies company.
 - f. Zurn Industries, LLC.
 - 2. Standard: ASSE 1018.
 - 3. Pressure Rating: 125 psig minimum.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 - 6. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 - 7. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.
- B. Drainage-Type, Trap-Seal Primer Device:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Smith, Jay R. Mfg. Co.
 - 2. Standard: ASSE 1044, lavatory P-trap with NPS 3/8 minimum, trap makeup connection.
 - 3. Size: NPS 1-1/4 minimum.
 - 4. Material: Chrome-plated, cast brass.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.

- 1. Locate backflow preventers in same room as connected equipment or system.
- 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
- 3. Do not install bypass piping around backflow preventers.
- B. Install water regulators with inlet and outlet shutoff valves. Install pressure gages on inlet and outlet.
- C. Install balancing valves in locations where they can easily be adjusted.
- D. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 - 1. Install cabinet-type units recessed in or surface mounted on wall as specified.
- E. Install Y-pattern strainers for water on supply side of each control valve water pressure-reducing valve solenoid valve and pump.
- F. Set nonfreeze, nondraining-type post hydrants in concrete or pavement.
- G. Set freeze-resistant yard hydrants with riser pipe in concrete or pavement. Do not encase canister in concrete.
- H. Install water-hammer arresters in water piping according to PDI-WH 201.
- I. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.
- J. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

3.2 CONNECTIONS

- A. Comply with requirements for ground equipment in Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- B. Fire-retardant-treated-wood blocking is specified in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each pressure vacuum breaker double-check, backflow-prevention assembly and doublecheck, detector-assembly backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Set field-adjustable pressure set points of water pressure-reducing valves.
- B. Set field-adjustable flow set points of balancing valves.
- C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION

SECTION 22 11 23 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. In-line, sealless centrifugal pumps.
 - 2. Horizontally mounted, in-line, close-coupled centrifugal pumps.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

PART 2 - PRODUCTS

2.1 IN-LINE, SEALLESS CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advanced Mechanical Technologies.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett; a Xylem brand.
 - 4. Grundfos Pumps Corp.
 - 5. TACO Incorporated.
 - 6. WILO USA LLC WILO Canada Inc.
- B. Description: Factory-assembled and -tested, in-line, close-coupled, canned-motor, sealless, overhung-impeller centrifugal pumps.
- C. Pump Construction:
 - 1. Pump and Motor Assembly: Hermetically sealed, replaceable-cartridge type with motor and impeller on common shaft and designed for installation with pump and motor shaft horizontal.

- 2. Casing: Bronze, with threaded or companion-flange connections.
- 3. Impeller: Plastic.
- 4. Motor: Single speed, unless otherwise indicated.
- D. Capacities and Characteristics:
 - 1. Capacity: See Plans.
 - 2. Total Dynamic Head: See Plans.
 - 3. Minimum Working Pressure: 125 psig.
 - 4. Maximum Continuous Operating Temperature: 220 deg F.
 - 5. Pump Speed: See Plans.
 - 6. Pump Control: Combination Thermostat/Timer.
 - 7. Motor Horsepower: See Plans.
 - 8. Electrical Characteristics: See Plans

2.2 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Alyan Pump Company.
 - 2. Armstrong Pumps, Inc.
 - 3. Bell & Gossett; a Xylem brand.
 - 4. Marshall Engineered Products Co.
 - 5. PACO Pumps; Grundfos Pumps Corporation, USA.
 - 6. Pentair Pump Group.
 - 7. TACO Incorporated.
 - 8. Thrush Co. Inc.
- B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.
- C. Pump Construction:
 - 1. Casing: Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
 - 2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
 - 3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
 - 4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
 - 5. Bearings: Oil-lubricated; bronze-journal or ball type.
 - 6. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
- D. Motor: Single speed, with grease-lubricated ball bearings; and resiliently or rigidly mounted to pump casing.
- E. Capacities and Characteristics:
 - 1. Capacity: See Plans.
 - 2. Total Dynamic Head: See Plans.
 - 3. Casing Material: Bronze.
 - 4. Impeller Material: ASTM B 584, cast bronze or stainless steel.

- 5. Minimum Working Pressure: 175 psig.
- 6. Maximum Continuous Operating Temperature: 225 deg F.
- 7. Pump Control: Combination Thermostat/Timer.
- 8. Pump Speed: See Plans.
- 9. Motor Horsepower: See Plans.
- 10. Electrical Characteristics: See Plans

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.4 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 65 to 200 deg F.
 - 3. Enclosure: NEMA 250, Type 4X.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 120 V, ac.
 - 7. Settings: Start pump at 105 deg F and stop pump at 125 deg F.
- B. Timers: Electric, for control of hot-water circulation pump.
 - 1. Type: Programmable, seven-day clock with manual override on-off switch.
 - 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement: 120-V ac.
 - 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.
- C. Install horizontally mounted, in-line, close-coupled centrifugal pumps with shaft horizontal.
- D. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.

- Comply with requirements for vibration isolation devices specified in Section 22 05 48.13 "Vibration Controls for Plumbing Piping and Equipment." Fabricate brackets or supports as required.
- 2. Comply with requirements for hangers and supports specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
- E. Install thermostats in hot-water return piping.
- F. Install timers adjacent to water heater.

3.2 CONNECTIONS

- A. Comply with requirements for piping specified in Section 22 11 16 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.
- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 - b. Comply with requirements for flexible connectors specified in Section 22 11 16 "Domestic Water Piping."
 - 2. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 22 11 19 "Domestic Water Piping Specialties."
 - 3. Install pressure gage at suction of each pump and pressure gage at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."
- D. Connect thermostats and timers to pumps that they control.

3.3 ADJUSTING

- A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 22 11 23

SECTION 22 13 13 - FACILITY SANITARY SEWERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe and fittings.
 - 2. Nonpressure and pressure couplings.
 - 3. Expansion joints.
 - 4. Cleanouts.
 - 5. Encasement for piping.
 - 6. Manholes.

1.2 ACTION SUBMITTALS

- A. Product Data: For expansion joints.
- B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
- B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
- C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra-Heavy classes.
- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.2 HUBLESS CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI-Trademark, Shielded Couplings:

FACILITY SANITARY SEWERS

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. Mission Rubber Company, LLC; a division of MCP Industries.
 - e. Stant.
 - f. Tyler Pipe; a subsidiary of McWane Inc.
- Description: ASTM C 1277 and CISPI 310, with stainless-steel corrugated shield; stainlesssteel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Shielded Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Clamp-All Corp.
 - c. Dallas Specialty & Mfg. Co.
 - d. Mission Rubber Company, LLC; a division of MCP Industries.
 - e. Stant.
 - f. Tyler Pipe; a subsidiary of McWane Inc.
 - 2. Description: ASTM C 1277 and ASTM C 1540, with stainless-steel shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.3 PVC PIPE AND FITTINGS

- A. PVC Type PSM Sewer Piping:
 - 1. Pipe: ASTM D 3034,, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM D 3034, PVC with bell ends.
 - 3. Gaskets: ASTM F 477, elastomeric seals.

2.4 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:

- 1. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Ring-Type, Flexible Couplings: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.5 EXPANSION JOINTS

- A. Ductile-Iron, Flexible Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. EBAA Iron, Inc.
 - b. Romac Industries, Inc.
 - c. Star Pipe Products.
 - 2. Description: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated.

2.6 CLEANOUTS

- A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 1. Top-Loading Classification(s): Heavy Duty.
 - 2. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

2.7 ENCASEMENT FOR PIPING

- A. Standard: ASTM A 674 or AWWA C105.
- B. Material: Linear low-density polyethylene film of 0.008-inch or high-density, cross-laminated polyethylene film of 0.004-inch minimum thickness.
- C. Form: Sheet or tube.
- D. Color: Black or natural.

2.8 MANHOLES

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches minimum unless otherwise indicated.

- 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
- 4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
- 5. Riser Sections: 4-inch minimum thickness, of length to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
- 8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
- 9. Steps: Individual FRP steps, FRP ladder, or ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
- 10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
- 11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Manhole Frames and Covers:
 - 1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch- minimum-width flange and 26-inch- diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."
 - 2. Material: ASTM A 536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.9 CONCRETE

- A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C 150, Type II.
 - 2. Fine Aggregate: ASTM C 33, sand.
 - 3. Coarse Aggregate: ASTM C 33, crushed gravel.
 - 4. Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.
- C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 - 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - a. Invert Slope: 2 percent through manhole.

- 2. Benches: Concrete, sloped to drain into channel.
 - a. Slope: 4 percent.
- D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Division 2 "Earth Work."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- F. Install gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 - 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or castin-place-concrete supports or anchors.
 - 3. Install piping with 60-inch minimum cover.
 - 4. Install hub-and-spigot, cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
 - 5. Install hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
 - 6. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.

- G. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:
 - 1. Hub-and-spigot, cast-iron soil pipe.
 - 2. Hubless cast-iron soil pipe and fittings.
 - 3. Expansion joints.
- H. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
 - 2. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
 - 3. Join hubless cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
 - 4. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 - 5. Join dissimilar pipe materials with nonpressure-type, flexible couplings.
- B. Pipe couplings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 - a. Unshielded flexible couplings for pipes of same or slightly different OD.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.4 MANHOLE INSTALLATION

- A. General: Install manholes complete with appurtenances and accessories indicated.
- B. Install precast concrete manhole sections with sealants according to ASTM C 891.
- C. Install FRP manholes according to manufacturer's written instructions.
- D. Form continuous concrete channels and benches between inlets and outlet.
- E. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
- F. Install manhole-cover inserts in frame and immediately below cover.
3.5 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.6 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.7 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- B. Make connections to existing piping and underground manholes.
 - 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.
 - a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 - b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
 - 4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
- C. Connect to grease oil and sand interceptors specified in Section 22 13 23 "Sanitary Waste Interceptors."

3.8 IDENTIFICATION

- A. Materials and their installation are specified in Division 2 "Earth Work." Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.
 - 1. Use detectable warning tape over ferrous piping.
 - 2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

3.9 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
 - 4. Submit separate report for each test.
 - 5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 - b. Close openings in system and fill with water.
 - c. Purge air and refill with water.
 - d. Disconnect water supply.
 - e. Test and inspect joints for leaks.
 - 6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 - b. Option: Test concrete gravity sewer piping according to ASTM C 924.
 - 7. Manholes: Perform hydraulic test according to ASTM C 969.

- C. Leaks and loss in test pressure constitute defects that must be repaired.
- D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.10 CLEANING

A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION 22 13 13

SECTION 22 13 16 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
- B. Related Section:
 - 1. Section 22 13 13 "Facility Sanitary Sewers" for sanitary sewerage piping and structures outside the building.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. Matco-Norca.
 - e. MIFAB, Inc.
 - f. Mission Rubber Company, LLC; a division of MCP Industries.
 - g. Stant.
 - h. Tyler Pipe; a subsidiary of McWane Inc.
- 2. Standards: ASTM C 1277 and CISPI 310.
- 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Clamp-All Corp.
 - c. Dallas Specialty & Mfg. Co.
 - d. MIFAB, İnc.
 - e. Mission Rubber Company, LLC; a division of MCP Industries.
 - f. Stant.
 - g. Tyler Pipe; a subsidiary of McWane Inc.
 - 2. Standards: ASTM C 1277 and ASTM C 1540.
 - 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- 2.3 PVC PIPE AND FITTINGS
 - A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
 - B. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
 - C. Adhesive Primer: ASTM F 656.
 - 1. Adhesive primer shall have a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - D. Solvent Cement: ASTM D 2564.
 - 1. PVC solvent cement shall have a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Dallas Specialty & Mfg. Co.
 - 2) Fernco Inc.
 - 3) Froet Industries LLC.
 - 4) Mission Rubber Company, LLC; a division of MCP Industries.
 - 5) Plastic Oddities.
 - b. Standard: ASTM C 1173.
 - c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
 - d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
 - 4. Shielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Mission Rubber Company, LLC; a division of MCP Industries.
 - b. Standard: ASTM C 1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

- 3.1 EARTH MOVING
 - A. Comply with requirements for excavating, trenching, and backfilling specified in Divison 31 "Earth Work."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping at indicated slopes.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- J. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- K. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
- L. Install aboveground PVC piping according to ASTM D 2665.
- M. Install underground PVC piping according to ASTM D 2321.
- N. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Comply with requirements for cleanouts specified in Section 22 13 19 "Sanitary Waste Piping Specialties."

- 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
- O. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
- Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 22 05 17 "Sleeves and Sleeve Seals for Plumbing Piping."
- R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- B. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.
- C. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes.
 - 3. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Shielded, nonpressure transition couplings.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.

- b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
- c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
- 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 8. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- F. Install supports for vertical cast-iron soil piping every 15 feet.
- G. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 3. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
 - 5. NPS 6: 10 feet with 5/8-inch rod.
 - 6. NPS 8: 10 feet with 3/4-inch rod.
- H. Install supports for vertical copper tubing every 10 feet.
- I. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
- J. Install supports for vertical PVC piping every 48 inches.
- K. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures: Connect drainage piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Install horizontal backwater valves in pit with pit cover flush with floor.
 - 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
 - 7. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

- 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
- 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.
- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.

3.10 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Above ground and underground soil and waste piping NPS 8 and smaller shall be any of the following (all piping located in the building's ceiling return air plenum, **utilize cast iron piping only**):
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints. This piping will be allowed above grade in walls, but not allowed in the return plenum ceiling space.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, vent piping NPS 6 and smaller shall be any of the following (If piping is located in a ceiling return air plenum, **utilize cast iron piping only**):
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints. This piping will be allowed above grade in walls, but not allowed in the return plenum ceiling space.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

- D. Underground, soil, waste piping NPS 8 and smaller grease waste piping and piping 25' downstream of dishwasher shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

END OF SECTION 22 13 16

SECTION 22 13 19 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cleanouts.
 - 2. Floor drains.
 - 3. Roof flashing assemblies.
 - 4. Miscellaneous sanitary drainage piping specialties.
 - 5. Flashing materials.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for grease interceptors.
- 1.3 QUALITY ASSURANCE
 - A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Cast-Iron Cleanouts:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.
 - d. Tyler Pipe; a subsidiary of McWane Inc.
 - e. Watts; a Watts Water Technologies company.
 - f. Zurn Industries, LLC.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk or raised-head, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Cast-Iron Floor Cleanouts (F.C.O.):

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. Oatey.
 - c. Sioux Chief Manufacturing Company, Inc.
 - d. Smith, Jay R. Mfg. Co.
 - e. Tyler Pipe; a subsidiary of McWane Inc.
 - f. Watts; a Watts Water Technologies company.
 - g. Zurn Industries, LLC.
- 2. Standard: ASME A112.36.2M for adjustable housing cleanout.
- 3. Size: Same as connected branch.
- 4. Type: Adjustable housing.
- 5. Body or Ferrule: Cast iron.
- 6. Clamping Device: Required.
- 7. Outlet Connection: Threaded.
- 8. Closure: Brass plug with tapered threads.
- 9. Adjustable Housing Material: Cast iron with threads.
- 10. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 11. Frame and Cover Shape: Round.
- 12. Top Loading Classification: Heavy Duty.
- 13. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- C. Cast-Iron Wall Cleanouts (W.C.O.):
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Josam Company.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.
 - d. Tyler Pipe; a subsidiary of McWane Inc.
 - e. Watts; a Watts Water Technologies company.
 - f. Zurn Industries, LLC.
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Raised-head, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.
 - 8. Wall Access: Round, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

2.2 FLOOR DRAINS

- A. Cast-Iron Floor Drains:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Commercial Enameling Company.
 - b. Josam Company.

- c. MIFAB, Inc.
- d. Prier Products, Inc.
- e. Smith, Jay R. Mfg. Co.
- f. Tyler Pipe; a subsidiary of McWane Inc.
- g. Watts; a Watts Water Technologies company.
- h. Zurn Industries, LLC.
- i. Sioux Chief
- 2. Standard: ASME A112.6.3.
- 3. Pattern: Floor drain.
- 4. Body Material: Gray iron.
- 5. Seepage Flange: Required.
- 6. Coating on Interior and Exposed Exterior Surfaces: Not required.
- 7. Top or Strainer Material: Nickel bronze.
- 8. Top of Body and Strainer Finish: Nickel bronze.
- 9. Top Shape: Round.
- 10. Top Loading Classification: Heavy Duty.
- 11. Trap Material: Cast iron.
- 12. Trap Pattern: Deep-seal P-trap.
- 13. Trap Features: Trap-seal primer valve drain connection.
- 14. Floor drain shall allow adjustment of 1" before concrete pour and 1" after the concrete pour.
- 2.3 ROOF FLASHING ASSEMBLIES
 - A. Roof Flashing Assemblies:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Engineering Company.
 - b. Thaler Metal Industries Ltd.
 - c. Zurn Industries, LLC.
 - 2. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch- thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - a. Open-Top Vent Cap: Without cap.
 - b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

- A. Open Drains:
 - Description: Shop or field fabricate from ASTM A 74, Service class, hub-and-spigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
 - 2. Size: Same as connected waste piping.
- B. Deep-Seal Traps:

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch- minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch- minimum water seal.
- C. Floor-Drain, Trap-Seal Primer Fittings:
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- D. Air-Gap Fittings:
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- E. Sleeve Flashing Device:
 - 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 - 2. Size: As required for close fit to riser or stack piping.
- F. Stack Flashing Fittings:
 - 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- G. Vent Caps <Insert drawing designation if any>:
 - 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.

2.5 FLASHING MATERIALS

- A. Lead Sheet: ASTM B 749, Type L51121, copper bearing, with the following minimum weights and thicknesses, unless otherwise indicated:
 - 1. General Use: 4.0-lb/sq. ft., 0.0625-inch thickness.
 - 2. Vent Pipe Flashing: 3.0-lb/sq. ft., 0.0469-inch thickness.
 - 3. Burning: 6-lb/sq. ft., 0.0938-inch thickness.
- B. Fasteners: Metal compatible with material and substrate being fastened.

- C. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- D. Solder: ASTM B 32, lead-free alloy.
- E. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 - 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
 - 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- E. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- F. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- G. Assemble open drain fittings and install with top of hub 1 inch above floor.
- H. Install deep-seal traps on floor drains and other waste outlets, if indicated.

- I. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- J. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- K. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- L. Install vent caps on each vent pipe passing through roof.
- M. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

- A. Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 07 62 00 "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each grease interceptor.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.5 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 13 19

SECTION 22 13 23 - SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Grease interceptors.

1.2 ACTION SUBMITTALS

- A. Review Submittals:
 - 1. Product Data: Manufacturer's standard data sheets describing components including materials, dimensions, relationship to adjacent construction, and attachments.
- B. Shop Drawings: For each type and size of precast-concrete interceptor indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Contract Documents are based on products by Schier Products Company, Edwardsville, KS USA
- B. Substitutions: Under provisions of Division 01.

2.2 INTERCEPTORS

- A. Grease Interceptors
 - 1. Model: Great Basin series model GB-250
 - 2. Description: Schier Great Basin[™] grease interceptor model # GB-250 shall be lifetime guaranteed and made in USA of seamless, rotationally-molded High Density Polyethylene with minimum 3/8" uniform wall thickness. Interceptor shall be furnished for above or below grade installation. Interceptor shall be built in accordance to ASME A112.14.3 (type C), with field adjustable riser system, built-in flow control, built in test caps and three outlet options. Interceptor flow rate shall be 1,076 GPM. Interceptor grease capacity shall be 100 lbs. Cover shall provide water/gas tight seal and have minimum 16,000 lbs load capacity.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Division 2 "Earth Work."

3.2 INSTALLATION

A. Install components in accordance with manufacturer's instructions and approved product data submittals.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 22 13 16 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Make piping connections between interceptors and piping systems.

3.4 IDENTIFICATION

- A. Identification materials and installation are specified in Division 2 "Earth Work." Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 - 1. Use warning tapes or detectable warning tape over ferrous piping.
 - 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

END OF SECTION 22 13 23

SECTION 22 14 13 - FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following storm drainage piping inside the building.
 - 1. Pipe, tube, and fittings.
 - 2. Special pipe fittings.

1.2 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure, unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water.

1.3 SUBMITTALS

A. Field quality-control inspection and test reports.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Hubless Cast-Iron Pipe and Fittings: ASTM A 888 or CISPI 301.
 - 1. Shielded Couplings: ASTM C 1277 assembly of metal shield or housing, corrosion-resistant fasteners, and rubber sleeve with integral, center pipe stop.
 - a. Standard, Shielded, Stainless-Steel Couplings: CISPI 310, with stainless-steel corrugated shield; stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve.
 - b. Heavy-Duty, Shielded, Stainless-Steel Couplings: With stainless-steel shield, stainlesssteel bands and tightening devices, and ASTM C 564, rubber sleeve.
- B. Solid-Wall PVC Pipe: ASTM D 2665, solid-wall drain, waste, and vent.

- 1. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns.
- 2. Solvent Cement and Adhesive Primer:
 - a. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Special pipe fittings with pressure ratings at least equal to piping pressure ratings may be used in applications below, unless otherwise indicated.
- B. Aboveground storm drainage piping shall be the following (PVC not allowed in ceiling return plenum, must use cast iron in ceiling return plenum unless encased per the 2012 IMC Section 602.2.1 exception 5.3 combustible materials may be located in plenums if fully enclosed by "materials listed and labeled for installation within a plenum"):
 - 1. Hubless cast-iron soil pipe and fittings; standard shielded, stainless-steel couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
- C. Underground storm drainage piping shall be the following:
 - 1. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.

3.2 PIPING INSTALLATION

- A. Storm sewer and drainage piping outside the building are specified in Division 2 Section "Storm Drainage."
- B. Basic piping installation requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- C. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers. Cleanouts are specified in Division 2 Section "Storm Drainage."
- D. Install cast-iron sleeve with water stop and mechanical sleeve seal at each service pipe penetration through foundation wall. Select number of interlocking rubber links required to make installation watertight. Sleeves and mechanical sleeve seals are specified in Division 22 Section "Common Work Results for Plumbing."
- E. Install wall-penetration-fitting system at each service pipe penetration through foundation wall. Make installation watertight.
- F. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

- G. Make changes in direction for storm piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- H. Lay buried building drain piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- I. Install storm drainage piping at the following minimum slopes, unless otherwise indicated:
 - 1. Building Storm Drain: 1 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Storm-Drainage Piping: 2 percent downward in direction of flow.
- J. Sleeves are not required for cast-iron soil piping passing through concrete slabs-on-grade if slab is without membrane waterproofing.
- K. Install PVC storm drainage piping according to ASTM D 2665.
- L. Install underground PVC storm drainage piping according to ASTM D 2321.
- M. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

3.3 JOINT CONSTRUCTION

- A. Basic piping joint construction requirements are specified in Division 22 Section "Common Work Results for Plumbing."
- B. Hubless Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-coupling joints.
- C. PVC Nonpressure Piping Joints: Join piping according to ASTM D 2665.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Seismic-restraint devices are specified in Division 22 Section "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Pipe hangers and supports are specified in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment." Install the following:
 - 1. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs: According to the following:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet, if Indicated: MSS Type 49, spring cushion rolls.

- 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- C. Install supports according to Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment."
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6: 60 inches with 3/4-inch rod.
 - 5. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
 - 4. NPS 6: 48 inches with 3/4-inch rod.
- I. Install supports for vertical PVC piping every 48 inches.
- J. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.5 CONNECTIONS

- A. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- B. Connect storm drainage piping to roof drains and storm drainage specialties.

3.6 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction.
- 3.7 CLEANING
 - A. Clean interior of piping. Remove dirt and debris as work progresses.
 - B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
 - C. Place plugs in ends of uncompleted piping at end of day and when work stops.

END OF SECTION 22 14 13

SECTION 22 14 23 - STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following storm drainage piping specialties:
 - 1. Cleanouts.
 - 2. Roof drains.
 - 3. Miscellaneous storm drainage piping specialties.

1.2 SUBMITTALS

A. Product Data: For each type of product indicated.

1.3 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Cast-Iron Cleanouts:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
 - g. Or approved equal.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Cast-Iron Floor Cleanouts:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. Josam Company; Josam Div.
- b. Oatey.
- c. Sioux Chief Manufacturing Company, Inc.
- d. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
- e. Tyler Pipe; Wade Div.
- f. Watts Drainage Products Inc.
- g. Zurn Plumbing Products Group; Light Commercial Operation.
- h. Zurn Plumbing Products Group; Specification Drainage Operation.
- i. Or approved equal.
- 2. Standard: ASME A112.36.2M for adjustable housing cleanout.
- 3. Size: Same as connected branch.
- 4. Type: Adjustable housing.
- 5. Body or Ferrule: Cast iron.
- 6. Closure: Brass plug .
- 7. Adjustable Housing Material: Cast iron with threads.
- 8. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
- 9. Frame and Cover Shape: Round.
- 10. Top Loading Classification: Heavy Duty.
- 11. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
- C. Cast-Iron Wall Cleanouts:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Josam Company; Josam Div.
 - b. MIFAB, Inc.
 - c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
 - d. Tyler Pipe; Wade Div.
 - e. Watts Drainage Products Inc.
 - f. Zurn Plumbing Products Group; Specification Drainage Operation.
 - g. Or approved equal.
 - 2. Standard: ASME A112.36.2M. Include wall access.
 - 3. Size: Same as connected drainage piping.
 - 4. Body: Hubless, cast-iron soil pipe test tee as required to match connected piping.
 - 5. Closure: Countersunk, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
 - 7. Wall Access: Round, deep, chrome-plated bronze cover plate with screw.
 - 8. Wall Access: Round, nickel-bronze or stainless-steel Insert material wall-installation frame and cover.

2.2 ROOF DRAINS

- A. Cast-Iron Roof Drains:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Josam Company; Josam Div.
 - b. Marathon Roofing Products.
 - c. MIFAB, Inc.
 - d. Portals Plus, Inc.

- e. Prier Products, Inc.
- f. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
- g. Tyler Pipe; Wade Div.
- h. Watts Drainage Products Inc.
- i. Zurn Plumbing Products Group; Light Commercial Operation.
- j. Zurn Plumbing Products Group; Specification Drainage Operation.
- k. Or approved equal.
- 2. Standard: ASME A112.21.2M.
- 3. Pattern: Roof drain.
- 4. Body Material: Cast iron.
- 5. Dome Material: Cast iron.
- 6. Underdeck Clamp: Required.
- 7. Sump Receiver: Required.
- B. Metal, Parapet Roof Drains:
 - 1. Standard: ASME A112.6.4, for parapet roof drains.
 - 2. Body Material: Cast iron
 - 3. Outlet: Back.
 - 4. Grate Material: Nickel-bronze alloy.
 - 5. Vandal-Proof Grate: Not required.

2.3 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

- A. Conductor Nozzles:
 - 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
 - 2. Size: Same as connected conductor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Refer to Division 22 Section "Common Work Results for Plumbing" for piping joining materials, joint construction, and basic installation requirements.
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions. Roof materials are specified in Division 07.
 - 1. Install roof-drain flashing collar or flange so that there will be no leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 - 2. Position roof drains for easy access and maintenance.
- F. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- G. Install cast-iron soil pipe downspout boots at grade with top of hub 18 inches above grade.
- H. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.
- I. Install escutcheons at wall, floor, and ceiling penetrations in exposed finished locations and within cabinets and millwork. Use deep-pattern escutcheons if required to conceal protruding pipe fittings.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Division 22 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of lead sheets 6.0-lb/sq. ft., 0.0938-inch thickness or thicker. Solder joints of lead sheets 4.0-lb/sq. ft., 0.0625-inch thickness or thinner.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 14 23
SECTION 22 15 13 - GENERAL-SERVICE COMPRESSED-AIR PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes piping and related specialties for general-service compressed-air systems operating at 150 psig or less.
- B. See Division 22 Section "General-Service Packaged Air Compressors and Receivers" for generalservice air compressors and accessories.

1.2 SUBMITTALS

- A. Product Data: For the following:
 - 1. Pressure regulators. Include rated capacities and operating characteristics.
 - 2. Automatic drain valves.
 - 3. Filters. Include rated capacities and operating characteristics.
 - 4. Lubricators. Include rated capacities and operating characteristics.
- B. Field quality-control test reports.
- C. Operation and maintenance data.

1.3 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for low-pressure compressed-air piping.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Copper Tube: ASTM B 88, Type M seamless, drawn-temper, water tube.
 - 1. Wrought-Copper Fittings: ASME B16.22, solder-joint pressure type or MSS SP-73, wrought copper with dimensions for brazed joints.
 - 2. Cast-Copper-Alloy Flanges: ASME B16.24, Class 150 or 300.
 - 3. Copper Unions: ASME B16.22 or MSS SP-123.
- B. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, full-face, asbestos free, 1/8-inch maximum thickness.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated.

2.3 VALVES

A. Metal Ball, Butterfly, Check and Globe Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping."

2.4 DIELECTRIC FITTINGS

- A. General Requirements for Dielectric Fittings: Combination fitting of copper alloy and ferrous materials with insulating material; suitable for system fluid, pressure, and temperature. Include threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Dielectric Unions: Factory-fabricated union assembly, for 250-psig minimum working pressure at 180 deg F.

2.5 FLEXIBLE PIPE CONNECTORS

- A. Bronze-Hose Flexible Pipe Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 - 1. Working-Pressure Rating: 200 psig minimum.
 - 2. End Connections, NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 - 3. End Connections, NPS 2-1/2 and Larger: Flanged copper alloy.
- B. Stainless-Steel-Hose Flexible Pipe Connectors: Corrugated-stainless-steel tubing with stainlesssteel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: 200 psig minimum.
 - 2. End Connections, NPS 2 and Smaller: Threaded steel pipe nipple.
 - 3. End Connections, NPS 2-1/2 and Larger: Flanged steel nipple.

2.6 SLEEVES

A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.7 ESCUTCHEONS

- A. General Requirements: Manufactured wall and ceiling escutcheons and floor plates, with ID to closely fit around pipe and tube and OD that completely covers opening.
- B. One-Piece, Deep-Pattern Escutcheons: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Escutcheons: With set screw.
 - 1. Finish: Polished chrome-plated.
- D. One-Piece, Stamped-Steel Escutcheons: With set screw or spring clips and chrome-plated finish.
- E. One-Piece, Floor-Plate Escutcheons: Cast iron.

2.8 SPECIALTIES

- A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.
 - 1. Pressure Settings: Higher than discharge pressure and same or lower than receiver pressure rating.
- B. Air-Main Pressure Regulators: Bronze body, pilot-operated direct acting, spring-loaded manual pressure-setting adjustment, and rated for 250-psig inlet pressure, unless otherwise indicated.
- C. Air-Line Pressure Regulators: Diaphragm or pilot operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 200-psig minimum inlet pressure, unless otherwise indicated.
- D. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket if wall mounting is indicated.
- E. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded. Include mounting bracket if wall mounting is indicated.
- F. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration, and drain cock. Include mounting bracket if wall mounting is indicated.

2.9 QUICK COUPLINGS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Aeroquip Corporation; Eaton Corp.
 - 2. Bowes Manufacturing Inc.

- 3. Foster Manufacturing, Inc.
- 4. Milton Industries, Inc.
- 5. Parker Hannifin Corp.; Fluid Connectors Group; Quick Coupling Div.
- Rectus Corp.
- 7. Schrader-Bridgeport; Amflo Div.
- 8. Schrader-Bridgeport/Standard Thomson.
- 9. Snap-Tite, Inc.; Quick Disconnect & Valve Division.
- 10. TOMCO Products Inc.
- 11. Tuthill Corporation; Hansen Coupling Div.
- B. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.
- C. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.
 - 1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.
 - 2. Plug End: Straight-through type with barbed outlet for attaching hose.
- D. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-plated-steel operating parts.
 - 1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
 - 2. Plug End: With barbed outlet for attaching hose.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Compressed-Air Piping between Air Compressors and Receivers: Use one of the following piping materials for each size range:
 - 1. NPS 2 and Smaller: Steel pipe; threaded, malleable-iron fittings; and threaded joints.
 - 2. NPS 2 and Smaller: Type K or L, copper tube; wrought-copper fittings; and brazed joints.
- B. Low-Pressure Compressed-Air Distribution Piping: Use the following piping materials for each size range:
 - 1. NPS 2 and Smaller: Type K or L, copper tube; wrought-copper fittings; and brazed or soldered joints.
- C. Drain Piping: Use the following piping materials:
 - 1. NPS 2 and Smaller: Type M copper tube; wrought-copper fittings; and brazed or soldered joints.

3.2 VALVE APPLICATIONS

- A. Comply with requirements in "Valve Applications" Article in Division 22 Section "General-Duty Valves for Plumbing Piping."
- B. Equipment Isolation Valves: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressedair piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.
- E. Install piping adjacent to equipment and machines to allow service and maintenance.
- F. Install air and drain piping with 1 percent slope downward in direction of flow.
- G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.
- H. Equipment and Specialty Flanged Connections:
 - 1. Use steel companion flange with gasket for connection to steel pipe.
 - Use cast-copper-alloy companion flange with gasket and brazed or soldered joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.
- I. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.
- J. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver.
- K. Install piping to permit valve servicing.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install unions, adjacent to each valve and at final connection to each piece of equipment and machine.

3.4 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from pipe and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Apply appropriate tape or thread compound to external pipe threads.
- D. Brazed Joints for Copper Tubing: Join according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- E. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Join according to ASTM B 828 or CDA's "Copper Tube Handbook."
- F. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
- G. Dissimilar Metal Piping Material Joints: Use dielectric fittings.

3.5 VALVE INSTALLATION

- A. General-Duty Valves: Comply with requirements in Division 22 Section "General-Duty Valves for Plumbing Piping."
- B. Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.
- C. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.
- D. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION

A. Install dielectric unions in piping at connections of dissimilar metal piping and tubing.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION

- A. Install flexible pipe connectors in discharge piping and in inlet air piping from remote air-inlet filter of each air compressor.
- B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.
- C. Install stainless-steel-hose flexible pipe connectors in steel compressed-air piping.

3.8 SPECIALTY INSTALLATION

A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.

- B. Install air-main pressure regulators in compressed-air piping at or near air compressors.
- C. Install air-line pressure regulators in branch piping to equipment.
- D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.
- E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters. Mount on wall at locations indicated.
- F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters. Mount on wall at locations indicated.
- G. Install quick couplings at piping terminals for hose connections.
- H. Install hose assemblies at hose connections.

3.9 SLEEVE INSTALLATION

- A. Install sleeves for pipes passing through concrete and masonry walls, gypsum board partitions, and concrete floor and roof slabs using galvanized-steel pipe.
- B. Install sleeves in new walls and slabs as new walls and slabs are constructed.
- C. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use Steel Pipe Sleeves.
- D. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements in Division 07 Section "Penetration Firestopping."

3.10 ESCUTCHEON INSTALLATION

- A. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. Piping with Fitting or Sleeve Protruding from Wall: One piece, deep pattern.
 - 2. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - 3. Bare Piping at Ceiling Penetrations in Finished Spaces: One piece, cast brass with polished chrome-plated finish.
 - 4. Bare Piping in Unfinished Service Spaces: One piece, cast brass with polished chrome-plated finish.
 - 5. Bare Piping in Equipment Rooms: One piece, stamped steel with set screw or spring clips.
 - 6. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece floor plate.

3.11 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements in Division 22 Section "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.
- B. Vertical Piping: MSS Type 8 or 42, clamps.

- C. Individual, Straight, Horizontal Piping Runs:
 - 1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers.
 - 2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
- D. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- E. Base of Vertical Piping: MSS Type 52, spring hangers.
- F. Support horizontal piping within 12 inches of each fitting and coupling.
- G. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.
- H. Install hangers for Schedule 40, steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4 to NPS 1/2: 96 inches with 3/8-inch rod.
 - 2. NPS 3/4 to NPS 1-1/4: 84 inches with 3/8-inch rod.
 - 3. NPS 1-1/2: 12 feet with 3/8-inch rod.
 - 4. NPS 2: 13 feet with 3/8-inch rod.
- I. Install supports for vertical, Schedule 40, steel piping every 15 feet.
- J. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1/4: 60 inches with 3/8-inch rod.
 - 2. NPS 3/8 and NPS 1/2: 72 inches with 3/8-inch rod.
 - 3. NPS 3/4: 84 inches with 3/8-inch rod.
 - 4. NPS 1: 96 inches with 3/8-inch rod.
 - 5. NPS 1-1/4: 108 inches with 3/8-inch rod.
 - 6. NPS 1-1/2: 10 feet with 3/8-inch rod.
 - 7. NPS 2: 11 feet with 3/8-inch rod.
- K. Install supports for vertical copper tubing every 10 feet.

3.12 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for general-service compressed-air piping, valves, and specialties. Comply with requirements in Division 22 Section "Identification for Plumbing Piping and Equipment."

3.13 FIELD QUALITY CONTROL

- A. Perform field tests and inspections.
- B. Tests and Inspections:
 - 1. Piping Leak Tests: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for

four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.

- 2. Repair leaks and retest until no leaks exist.
- 3. Inspect filters and pressure regulators for proper operation.

END OF SECTION 22 15 13

SECTION 22 15 19 - GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Oil-flooded, rotary-screw air compressors.
 - 2. Inlet-air filters.
 - 3. Refrigerant compressed-air dryers.

1.2 DEFINITIONS

- A. Actual Air: Air delivered from air compressors. Flow rate is delivered compressed air measured in acfm.
- B. Standard Air: Free air at 68 deg F and 1 atmosphere before compression or expansion and measured in scfm.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label receivers to comply with ASME Boiler and Pressure Vessel Code.

2.2 GENERAL REQUIREMENTS FOR PACKAGED AIR COMPRESSORS AND RECEIVERS

A. General Description: Factory-assembled, -wired, -piped, and -tested; electric-motor-driven; aircooled; continuous-duty air compressors and receivers that deliver air of quality equal to intake air.

B. Motor mounted starter

- C. Receivers: Steel tank constructed according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 1. Pressure Rating: At least as high as highest discharge pressure of connected compressors, and bearing appropriate code symbols.
 - 2. Interior Finish: Corrosion-resistant coating.
 - 3. Accessories: Include safety valve, pressure gage, drain, and pressure-reducing valve.

2.3 OIL-FLOODED, ROTARY-SCREW AIR COMPRESSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chicago Pneumatic.
- B. Compressor(s): Oil-flooded, rotary-screw type with lubricated helical screws and lubricated gear box.
 - 1. Coupling: Nonlubricated, flexible type.
 - 2. Cooling/Lubrication System: Unit-mounted, air-cooled exchanger package prepiped to unit; with air pressure circulation system with coolant stop valve, full-flow coolant filter, and thermal bypass valve.
 - 3. Air Filter: Dry type, with maintenance indicator and cleanable, replaceable filter element.
 - 4. Air/Coolant Receiver and Separation System: 150-psig- rated steel tank with ASME safety valve, coolant-level gage, multistage air-coolant separator element, minimum pressure valve, blowdown valve, discharge check valve, coolant stop valve, full-flow coolant filter, and thermal bypass valve.
 - 5. Capacity Control: Capacity modulation between zero and 100 percent air delivery, with operating pressures between 50 and 100 psig. Include necessary control to hold constant pressure. When air demand is zero, unload compressor by using pressure switch and blowdown valve.
- C. Capacities and Characteristics:
 - 1. Air Compressor(s): See schedule on drawings for requirements.
 - 2. Receiver: ASME construction steel tank.
 - a. Arrangement: Horizontal.
 - b. Capacity: 120 gal.
 - c. Drain: Automatic valve.
 - d. See drawings for other characteristics.
 - 3. Enclosure: Steel with sound-attenuating material lining.

2.4 INLET-AIR FILTERS

- A. Description: Combination inlet-air filter-silencer, suitable for remote installation, for multiple air compressors.
 - 1. Construction: Weatherproof housing for replaceable, dry-type filter element, with silencer tubes or other method of sound reduction.

2. Capacity: Match total capacity of connected air compressors, with filter having collection efficiency of 99 percent retention of particles larger than 10 micrometers.

2.5 REFRIGERANT COMPRESSED-AIR DRYERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Chicago Pneumatic.
- B. Description: Integrated unit with compressor.

2.6 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load does not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Equipment Mounting:
 - 1. Install air compressors on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation devices specified in Section 22 05 48.13 "Vibration Controls for Plumbing Piping and Equipment."
- B. Install compressed-air equipment anchored to substrate.
- C. Arrange equipment so controls and devices are accessible for servicing.
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Install the following devices on compressed-air equipment:
 - 1. Thermometer, Pressure Gage, and Safety Valve: Install on each compressed-air receiver.
 - 2. Pressure Regulators: Install downstream from air compressors and dryers.
 - 3. Automatic Drain Valves: Install on aftercoolers, receivers, and dryers. Discharge condensate over nearest floor drain.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 15 13 "General-Service Compressed-Air Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to machine, allow space for service and maintenance.

3.3 IDENTIFICATION

A. Identify general-service air compressors and components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

END OF SECTION 22 15 19

SECTION 22 34 00 - FUEL-FIRED, DOMESTIC-WATER HEATERS AND STORAGE TANKS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Commercial, grid-type, finned-tube, gas-fired, domestic-water heaters.
 - 2. Domestic Hot Water Storage Tanks
 - 3. Domestic-water heater accessories.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type and size of domestic-water heater indicated.
- B. Shop Drawings:
 - 1. Wiring Diagrams: For power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

- A. Product certificates.
- B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- C. Source quality-control reports.
- D. Field quality-control reports.
- E. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. ASME Compliance:

- 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
- 2. Where ASME-code construction is indicated, fabricate and label commercial, finned-tube, domestic-water heaters to comply with ASME Boiler and Pressure Vessel Code: Section IV.
- D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61, "Drinking Water System Components Health Effects."

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Finned-Tube, Gas-Fired, Domestic-Water Heaters:
 - 1) Heat Exchanger: Five years.
 - 2) Controls and Other Components: One year(s).
 - 3) Separate Hot-Water Storage Tanks: Five years.

PART 2 - PRODUCTS

- 2.1 COMMERCIAL, FINNED-TUBE, GAS-FIRED, DOMESTIC-WATER HEATERS
 - A. Commercial, Grid-Type, Finned-Tube, Gas-Fired, Domestic-Water Heaters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lochinvar, LLC.
 - b. Approved Equal.
 - B. The WATER HEATER shall bear the ASME "HLW" stamp and shall be National Board listed. There shall be no banding material, bolts, gaskets or "O" rings in the header configuration. The stainless steel combustion chamber shall be designed to drain condensation to the bottom of the heat exchanger assembly. A built-in trap shall allow condensation to drain from the heat exchanger assembly. The complete heat exchanger assembly shall carry a five (5) year limited warranty.
 - C. The WATER HEATER shall be certified and listed by C.S.A. International under the latest edition of the harmonized ANSI Z21.10.3 test standard for the US and Canada The WATER HEATER shall comply with the energy efficiency requirements of the latest edition of the ASHRAE 90.1 Standard. The WATER HEATER shall operate at a minimum of 96% thermal efficiency. The WATER HEATER shall be certified for indoor installation.
 - D. The WATER HEATER shall be constructed with a heavy gauge steel jacket assembly, primed and pre-painted on both sides. The combustion chamber shall be sealed and completely enclosed, independent of the outer jacket assembly, so that integrity of the outer jacket does not affect a proper seal. A burner/flame observation port shall be provided. The burner shall be a premix design and

constructed of high temperature stainless steel with a woven metal fiber outer covering to provide modulating firing rates. The WATER HEATER shall be supplied with a gas valve designed with negative pressure regulation and be equipped with a variable speed blower system, to precisely control the fuel/air mixture to provide modulating WATER HEATER firing rates for maximum efficiency. The WATER HEATER shall operate in a safe condition with gas supply pressures as low as 4 inches of water column.

- E. The WATER HEATER shall utilize a 24 VAC control circuit and components. The control system shall have a Liquid Crystal touch screen display for water heater set-up, water heater status, and water heater diagnostics. All components shall be easily accessed and serviceable from the front and top of the jacket. The WATER HEATER shall be equipped with; a high limit temperature control certified to UL353, ASME certified pressure relief valve, outlet water temperature sensor, inlet water temperature sensor, a flue temperature sensor, low water flow protection, built-in freeze protection and a condensate trap for the heat exchanger condensate drain. The manufacturer shall verify proper operation of the burner, all controls and the heat exchanger by connection to water and venting for a factory fire test prior to shipping.
- F. The WATER HEATER shall feature the "Smart System" control with a Liquid Crystal touch screen display with password security, pump delay with freeze protection, pump exercise, and a PC port connection. The WATER HEATER shall feature night setback for the domestic hot water tank. The WATER HEATER shall have the capability to accept a 0-10 VDC input connection for BMS control of modulation or setpoint and enable/disable of the water heater. The WATER HEATER shall have a built-in cascading sequencer. The cascading sequencer shall be capable of rotation while maintaining modulation of up to eight water heaters without utilization of an external controller. The control shall be compatible with optional Modbus communication. Supply voltage shall be 120 volt / 60 hertz / single phase.
- G. The WATER HEATER shall be equipped with two terminal strips for electrical connection. A low voltage connection board with data points for safety and operating controls, i.e., Auxiliary Relay, Auxiliary Proving Switch, Alarm Contacts, Runtime Contacts, Flow Switches, Tank Thermostat, Tank Sensor, Building Management System Signal, Modbus Control Contacts and Cascade Control Circuit. A high voltage terminal strip shall be provided for supply voltage. The high voltage terminal strip plus integral relays are provided for independent control of the Domestic Hot Water Pumps.
- H. The WATER HEATER shall be installed and vented with a:
 - 1. Direct Vent Sidewall system with a horizontal sidewall termination of both the vent and combustion air. The flue shall be CPVC sealed vent material terminating at the sidewall with the manufacturers specified vent termination. A separate pipe shall supply combustion air directly to the WATER HEATER from the outside. The air inlet pipe shall be PVC or Galvanized sealed pipe. The air inlet must terminate on the same sidewall with the manufacturer's specified air inlet cap. The WATER HEATER's total combined air intake length shall not exceed 100 equivalent feet. The WATER HEATER's total combined exhaust venting length shall not exceed 100 equivalent feet. Foam Core pipe is not an approved material for exhaust piping.
- I. The domestic hot water supply shall be a package system shall consist of a water heater, two all bronze circulating pumps, inlet and outlet ball valves and an ASME temperature and pressure relief valve. Components shall be as follows:
- J. The CIRCULATING PUMPS shall be all bronze and operate on a 120 volt, 60 cycle, 1 phase power supply (unless otherwise specified). The pump shall shipped loose for field mounting and wiring.
- K. Comply with the following Standard: ANSI Z21.13/CSA 4.9 for hot-water-supply boilers.

L. Capacity and Characteristics: See schedule on the drawings

2.2 GLASS LINED HOT-WATER STORAGE TANK:

- A. Connected with piping to circulating pump and domestic-water heater.
 - 1. Construction: According to ASME Boiler and Pressure Vessel Code: Section VIII, steel with 150-psig working-pressure rating.
 - 2. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 - a. NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 - b. NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainlesssteel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 - 3. Interior Finish: Comply with NSF 61 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
- B. Factory-Installed Storage-Tank Appurtenances:
 - 1. Anode Rods: Factory installed, magnesium.
 - 2. Drain Valve: Corrosion-resistant metal complying with ASSE 1005, factory installed.
 - 3. Insulation: None Bare Tank for field insulating
 - 4. Jacket: None Bare Tank
 - 5. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.
- C. Piping: Copper tubing; copper, solder-joint fittings; and brazed or flanged joints.
- D. Mounting: Domestic-water heater, tank, and accessories mounted per contractor's choice.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

- A. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- B. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.
- C. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.
- B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.
- C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.
- D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base.
 - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 8. Anchor domestic-water heaters to substrate.
- B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping,"
- C. Install gas-fired, domestic-water heaters according to NFPA 54.
 - 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 - 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
 - 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.

- D. Install oil-fired, domestic-water heaters according to NFPA 31.
 - Install shutoff valves on fuel-oil supply piping to oil-fired water-heater burners without shutoff valves. Comply with requirements for shutoff valves specified in Section 23 11 13 "Facility Fuel-Oil Piping."
- E. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- F. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- G. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- H. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains.
- I. Install thermometer on outlet piping of domestic-water heaters.
- J. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- K. Fill domestic-water heaters with water.

3.2 CONNECTIONS

- A. Comply with requirements for domestic-water piping specified in Section 22 11 16 "Domestic Water Piping."
- B. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- 1. Retain first subparagraph below to require a factory-authorized service representative to assist Contractor with inspections, tests, and adjustments.
- 2. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- 3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 4. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
- 5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial, domestic-water heaters.

END OF SECTION 22 34 00

SECTION 22 42 13.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Water closets.
 - 2. Flushometer valves.
 - 3. Toilet seats.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

- A. Urinals: Wall Hung, back outlet, Siphon Jet.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Sloan Valve Company.
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard.
 - f. Rim Contour: Elongated.
 - g. Water Consumption: As noted on plumbing fixture schedule.
 - h. Spud Size and Location: NPS 1-1/2; top.

- 3. Flushometer Valve: See schedule.
- 4. Toilet Seat: See schedule.
- 5. Support:
 - a. Standard: ASME A112.6.1M.
 - b. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.
 - c. Water-Closet Mounting Height: Standard and Handicapped/elderly according to ICC/ANSI A117.1 as indicated in the plumbing fixture schedule.

2.2 FLUSHOMETER VALVES

- A. Lever-Handle, Diaphragm Flushometer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Sloan Valve Company (Sloan "Royal").
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.
 - 5. Material: Brass body with corrosion-resistant components.
 - 6. Exposed Flushometer-Valve Finish: Chrome plated.
 - 7. Panel Finish: Chrome plated or stainless steel.
 - 8. Style: Exposed.
 - 9. Consumption: Per plumbing fixture schedule.
 - 10. Minimum Inlet: NPS 1.
 - 11. Minimum Outlet: NPS 1-1/4.

2.3 TOILET SEATS

- A. Toilet Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Bemis Manufacturing Company.
 - c. Church Seats; Bemis Manufacturing Company.
 - d. Comfort Seats
 - e. Kohler Co.
 - f. Olsonite Seat Co.
 - g. TOTO USA, INC.
 - h. Zurn Industries, LLC.
 - 2. Standard: IAPMO/ANSI Z124.5.
 - 3. Material: Plastic.
 - 4. Type: Commercial (Heavy duty).
 - 5. Shape: Elongated rim, open front.

- 6. Hinge: Check.
- 7. Hinge Material: Noncorroding metal.
- 8. Seat Cover: Not required.
- 9. Color: White.

2.4 FLOOR-MOUNTED, BOTTOM-OUTLET WATER CLOSETS

- A. Water Closets: Floor mounted, bottom outlet, top spud.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Sloan Valve Company.
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard and Handicapped/elderly, complying with ICC/ANSI A117.1 as indicated in the plumbing fixture schedule.
 - f. Rim Contour: Elongated.
 - g. Water Consumption: As noted on fixture schedule.
 - h. Spud Size and Location: NPS 1-1/2; top.
 - i. Color: White.
 - 3. Bowl-to-Drain Connecting Fitting: ASME A112.4.3.
 - 4. Flushometer Valve: See schedule.
 - 5. Toilet Seat: Provide to match fixture.
- B. Lever-Handle, Diaphragm Flushometer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Sloan Valve Company.
 - b. Zurn Industries, LLC.
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.
 - 5. Material: Brass body with corrosion-resistant components.
 - 6. Exposed Flushometer-Valve Finish: Chrome plated.
 - 7. Panel Finish: Chrome plated or stainless steel.
 - 8. Style: Exposed.
 - 9. Consumption: Per plumbing fixture schedule.
 - 10. Minimum Inlet: NPS 1.
 - 11. Minimum Outlet: NPS 1-1/4.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Water-Closet Installation:
 - 1. Install level and plumb according to roughing-in drawings.
 - 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
 - 3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.
- B. Support Installation:
 - 1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
 - 2. Use carrier supports with waste-fitting assembly and seal.
 - 3. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.
- C. Flushometer-Valve Installation:
 - 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 - 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 - 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 - 4. Install actuators in locations that are easy for people with disabilities to reach.
- D. Install toilet seats on water closets.
- E. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
- F. Joint Sealing:
 - 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildewresistant silicone sealant.
 - 2. Match sealant color to water-closet color.
 - 3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.2 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

- C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.3 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.

3.4 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 13.13

SECTION 22 42 13.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Urinals.
 - 2. Flushometer valves.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

- A. Urinals: Wall hung, back outlet, washout.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Zurn Industries, LLC.
 - 2. Fixture:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon Jet.
 - d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 - e. Water Consumption: Per plumbing fixture schedule.
 - f. Spud Size and Location: NPS 3/4, top.
 - g. Outlet Size and Location: NPS 2, back.
 - h. Color: White.
 - 3. Flushometer Valve: See schedule.

- 4. Waste Fitting:
 - a. Standard: ASME A112.18.2/CSA B125.2 for coupling.
 - b. Size: NPS 2.
- 5. Support: ASME A112.6.1M, Type I, urinal carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture.

2.2 URINAL FLUSHOMETER VALVES

- A. Lever-Handle, Diaphragm Flushometer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Sloan Valve Company.
 - b. Zurn Industries, LLC.
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.
 - 5. Material: Brass body with corrosion-resistant components.
 - 6. Exposed Flushometer-Valve Finish: Chrome plated.
 - 7. Style: Exposed.
 - 8. Consumption: Per plumbing fixture schedule.
 - 9. Minimum Inlet: NPS 3/4.
 - 10. Minimum Outlet: NPS 3/4.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.
- B. Examine walls and floors for suitable conditions where urinals will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Urinal Installation:
 - 1. Install urinals level and plumb according to roughing-in drawings.
 - 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
 - 3. Install wall-hung, bottom-outlet urinals with tubular waste piping attached to supports.
 - 4. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.
 - 5. Install trap-seal liquid in waterless urinals.

B. Support Installation:

- 1. Install supports, affixed to building substrate, for wall-hung urinals.
- 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
- 3. Use carriers without waste fitting for urinals with tubular waste piping.
- 4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.
- C. Flushometer-Valve Installation:
 - 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 - 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 - 3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.
- D. Wall Flange and Escutcheon Installation:
 - 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
 - 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 - 3. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
- E. Joint Sealing:
 - 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 - 2. Match sealant color to urinal color.
 - 3. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed urinals and fittings.
- C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 13.16

SECTION 22 42 16.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Lavatories.
 - 2. Faucets.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.
- 1.3 INFORMATIONAL SUBMITTALS
 - A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of automatic faucets.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

- A. Lavatory: Vitreous china, wall mounted, with back.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Briggs Plumbing Products, Inc.
 - c. Crane Plumbing, L.L.C.
 - d. FNW; Ferguson Enterprises, Inc.
 - e. Gerber Plumbing Fixtures LLC.
 - f. Kohler Co.

- g. Mansfield Plumbing Products LLC.
- h. Peerless Pottery Sales, Inc.
- i. Zurn Industries, LLC.
- 2. Fixture:
 - a. Standard: ASME A112.19.2/CSA B45.1.
 - b. Type: For wall hanging.
 - c. Faucet-Hole Punching: One hole.
 - d. Faucet-Hole Location: Top.
 - e. Color: White.
 - f. Mounting Material: Chair carrier.
- 3. Faucet: See schedule.
- 4. Support: ASME A112.6.1M, Type II, concealed-arm lavatory carrier.

2.2 SOLID-BRASS, MANUALLY OPERATED FAUCETS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for faucet materials that will be in contact with potable water.
- B. Lavatory Faucets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. American Standard.
 - 2. Standard: ASME A112.18.1/CSA B125.1.
 - 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 - 4. Body Type: Single hole.
 - 5. Body Material: Commercial, solid brass.
 - 6. Finish: Polished chrome plate.
 - 7. Maximum Flow Rate: 0.5 gpm.
 - 8. Maximum Flow: 0.25 gal. per metering cycle.
 - 9. Mounting Type: Deck, exposed.
 - 10. Spout: Rigid type.
 - 11. Spout Outlet: Aerator.
 - 12. Operation: Manual.
 - 13. Drain: Not part of faucet.

2.3 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Loose key.
- F. Risers:
 - 1. NPS 1/2.
 - 2. ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.

2.4 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2 by NPS 1-1/4.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch- thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
- B. Examine counters and walls for suitable conditions where lavatories will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install lavatories level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-mounted lavatories.
- C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
- D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."

- E. Seal joints between lavatories and counters and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."
- F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. After completing installation of lavatories, inspect and repair damaged finishes.
- B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed lavatories and fittings.
- D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 16.13
SECTION 22 42 16.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Service basins.
 - 2. Service sinks.
 - 3. Utility sinks.
 - 4. Handwash sinks.
 - 5. Sink faucets.
 - 6. Laminar-flow, faucet-spout outlets.
 - 7. Supply fittings.
 - 8. Waste fittings.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- 1.3 INFORMATIONAL SUBMITTALS
 - A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

- 2.1 SERVICE BASINS
 - A. Service Basins: Plastic, floor mounted.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Plumbing, L.L.C.
 - b. E. L. Mustee & Sons, Inc.
 - c. Florestone Products Co., Inc.
 - d. Fiat
 - e. FNW; Ferguson Enterprises, Inc.
 - f. Swan Corporation (The).
 - g. Zurn Industries, LLC.

- 2. Fixture:
 - a. Standard: IAPMO/ANSI Z124.6.
 - b. Material: Cast polymer.
 - c. Nominal Size: 24 by 36 by 10 inches and 24 by 24 by 10 inches.
 - d. Tiling Flange: Not required.
 - e. Rim Guard: On front top surfaces.
 - f. Color: Not applicable.
 - g. Drain: Grid with NPS 3 outlet.
- 3. Mounting: On floor and flush to wall.
- 4. Faucet: See schedule.
- 2.2 SERVICE SINKS
 - A. Laundry Tub: Floor mounted molded stone.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fiat.
 - 2. Fixture:
 - a. Standard: ASME A112.19.1/CSA B45.2.
 - b. Type: Service sink with back.
 - c. Back: Two faucet holes.
 - d. Nominal Size: 22 by 23 inches.
 - e. Color: White.
 - f. Mounting: NPS 2 P-trap standard with grid strainer inlet, cleanout.
 - 3. Faucet: See Schedule.

2.3 HANDWASH SINKS

- A. Handwash Sinks: Stainless steel, under mounted.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Tabco.
 - b. AERO Manufacturing Company.
 - c. Amtekco Industries, Inc; a Wasserstrom Company.
 - d. Eagle Group.
 - e. Elkay Manufacturing Co.
 - f. Griffin Products, Inc.
 - g. Just Manufacturing.
 - 2. Fixture:
 - a. Standards: ASME A112.19.3/CSA B45.4 and NSF/ANSI 2.
 - b. Type: Basin with radius corners, back for faucet, and support brackets.

- c. Nominal Size: See Schedule.
- 3. Faucet: See schedule.
- 4. Supply Fittings: Comply with requirements in "Supply Fittings" Article.
- 5. Waste Fittings: Comply with requirements in "Waste Fittings" Article.
- 6. Support: ASME A112.6.1M, Type II, sink carrier.
- 2.4 SINK FAUCETS
 - A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for faucet-spout materials that will be in contact with potable water.
 - B. Sink Faucets: Manual type See schedule.
 - 1. Commercial, Solid-Brass Faucets:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) American Standard America.
 - 2) Bradley Corporation.
 - 3) Chicago Faucets; Geberit Company.
 - 4) Delta Faucet Company.
 - 5) Elkay Manufacturing Co.
 - 6) GROHE America, Inc.
 - 7) Just Manufacturing.
 - 8) Kohler Co.
 - 9) Moen Incorporated.
 - 10) Sloan Valve Company.
 - 11) Speakman Company.
 - 12) T & S Brass and Bronze Works, Inc.
 - 13) Zurn Industries, LLC.
 - 2. General-Duty, Solid-Brass Faucets:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) American Standard America.
 - 2) Bradley Corporation.
 - 3) BrassTech Inc.
 - 4) Central Brass Company.
 - 5) Chicago Faucets; Geberit Company.
 - 6) Danze, Inc.
 - 7) Delta Faucet Company.
 - 8) Eljer, Inc.
 - 9) Elkay Manufacturing Co.
 - 10) Franke Consumer Products, Inc.
 - 11) Gerber Plumbing Fixtures LLC.
 - 12) Griffin Products, Inc.
 - 13) GROHE America, Inc.
 - 14) Hansgrohe USA.
 - 15) Hydrotek International, Inc.
 - 16) Intersan Manufacturing Company.

- 17) Just Manufacturing.
- 18) Kohler Co.
- 19) Matco-Norca.
- 20) Moen Incorporated.
- 21) Price Pfister, Inc.
- 22) Speakman Company.
- 23) T & S Brass and Bronze Works, Inc.
- 24) WhiteRock Corp.
- 25) Wolverine Brass, Inc.
- 26) Zurn Industries, LLC.
- 3. Copper- or Brass-Underbody Faucets:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) American Standard America.
 - 2) Briggs Plumbing Products, Inc.
 - 3) Danze, Inc.
 - 4) Delta Faucet Company.
 - 5) Eljer, Inc.
 - 6) FNW; Ferguson Enterprises, Inc.
 - 7) Gerber Plumbing Fixtures LLC.
 - 8) Matco-Norca.
 - 9) Moen Incorporated.
 - 10) Sterling.
 - 11) WhiteRock Corp.
 - 12) Wolverine Brass, Inc.
- 4. Standard: ASME A112.18.1/CSA B125.1.
- 5. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
- 6. Body Type: Centerset.
- 7. Body Material: Commercial, solid brass.
- 8. Finish: Chrome plated.
- 9. Maximum Flow Rate: 2.2 gpm.
- 10. Handle(s): Wrist blade, 4 inches.
- 11. Mounting Type: Deck, exposed.
- 12. Spout Type: Rigid, solid brass.
- 13. Vacuum Breaker: Not required for hose outlet.

2.5 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

- E. Operation: Wheel handle.
- F. Risers:
 - 1. NPS 1/2
 - 2. ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

2.6 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch- thick brass tube to wall; and chrome-plated brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch- thick stainless-steel tube to wall; and stainless-steel wall flange.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
- B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sinks level and plumb according to roughing-in drawings.
- B. Install water-supply piping with stop on each supply to each sink faucet.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
 - 2. Install stops in locations where they can be easily reached for operation.
- C. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
- D. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

E. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of sinks, inspect and repair damaged finishes.
- B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed sinks and fittings.
- D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 16.16

SECTION 22 42 23 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Shower faucets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance data.

PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

- A. NSF Standard: Comply with NSF 61, "Drinking Water System Components Health Effects," for shower materials that will be in contact with potable water.
- B. Shower Faucets:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Standard America.
 - b. Chicago Faucets; Geberit Company.
 - c. FNW; Ferguson Enterprises, Inc.
 - d. Kohler Co.
 - e. Lawler Manufacturing Company, Inc.
 - f. Leonard Valve Company.
 - g. Matco-Norca.
 - h. Moen Incorporated.
 - i. Powers.
 - j. Sloan Valve Company.
 - k. Speakman Company.
 - I. Symmons
 - m. Zurn Industries, LLC.
 - 2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.

- 3. Faucet:
 - a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 - b. Body Material: Solid brass.
 - c. Finish: Polished chrome plate.
 - d. Maximum Flow Rate: 2.5 gpm unless otherwise indicated.
 - e. Mounting: Concealed.
 - f. Operation: Single-handle, twist or rotate control.
 - g. Antiscald Device: Integral with mixing valve.
 - h. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.
- 4. Supply Connections: NPS 1/2.
- 5. Shower Head:
 - a. Standard: ASME A112.18.1/CSA B125.1.
 - b. Type: Ball joint and head integral with mounting flange.
 - c. Shower Head Material: Metallic with chrome-plated finish.
 - d. Spray Pattern: Fixed.
 - e. Integral Volume Control: Not required.
 - f. Shower-Arm, Flow-Control Fitting: 2.0 gpm.
 - g. Temperature Indicator: Integral with faucet.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Assemble shower components according to manufacturers' written instructions.
- B. Install shower faucets level and plumb according to roughing-in drawings.
- C. Install water-supply piping with stop on each supply to each shower faucet.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
 - 2. Install stops in locations where they can be easily reached for operation.
- D. Install shower flow-control fittings with specified maximum flow rates in shower arms.

3.2 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
- C. Comply with traps and soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.3 ADJUSTING

- A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.4 CLEANING AND PROTECTION

- A. After completing installation of showers, inspect and repair damaged finishes.
- B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed fixtures and fittings.
- D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 42 23

SECTION 22 45 00 - EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Emergency showers.
 - 2. Eyewash equipment.
 - 3. Combination units.
 - 4. Water-tempering equipment.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Diagram power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment."
- C. NSF Standard: Comply with NSF 61, "Drinking Water System Components Health Effects," for fixture materials that will be in contact with potable water.
- D. Regulatory Requirements: Comply with requirements in ICC/ANSI A117.1, "Accessible and Usable Buildings and Facilities" for plumbing fixtures for people with disabilities.

PART 2 - PRODUCTS

2.1 COMBINATION UNITS

A. Standard, Plumbed Emergency Shower with Eyewash Combination Units,:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Safety.
 - b. Bradley Corporation.
 - c. Encon Safety Products.
 - d. Guardian Equipment Co.
 - e. Haws Corporation.
 - f. Sellstrom Manufacturing Company.
 - g. Speakman Company.
 - h. WaterSaver Faucet Co.
- 2. Piping:
 - a. Material: Galvanized steel.
 - b. Unit Supply: NPS 1-1/4 minimum.
 - c. Unit Drain: Outlet at back or side near bottom.
- 3. Shower:
 - a. Capacity: Not less than 20 gpm for at least 15 minutes.
 - b. Supply Piping: NPS 1 with flow regulator and stay-open control valve.
 - c. Control-Valve Actuator: Pull rod.
 - d. Shower Head: 8-inch- minimum diameter, chrome-plated brass or stainless steel.
 - e. Mounting: Pedestal.
- 4. Eyewash Unit:
 - a. Capacity: Not less than 0.4 gpm for at least 15 minutes.
 - b. Supply Piping: NPS 1/2 with flow regulator and stay-open control valve.
 - c. Control-Valve Actuator: Paddle.
 - d. Spray-Head Assembly: Two receptor-mounted spray heads.
 - e. Receptor: Chrome-plated brass or stainless-steel bowl.
 - f. Mounting: Attached shower pedestal.
 - g. Drench-Hose Option: May be provided instead of eyewash unit.
 - 1) Capacity: Not less than 0.4 gpm for at least 15 minutes.
 - 2) Drench Hose: Hand-held spray head with squeeze-handle actuator and hose.
 - 3) Mounting: Bracket on shower pedestal.
- B. Accessible, Plumbed Emergency Shower with Eyewash Combination Units,:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Safety.
 - b. Bradley Corporation.
 - c. Encon Safety Products.
 - d. Guardian Equipment Co.
 - e. Haws Corporation.
 - f. Sellstrom Manufacturing Company.
 - g. Speakman Company.
 - h. WaterSaver Faucet Co.

- 2. Piping:
 - a. Material: Galvanized steel.
 - b. Unit Supply: NPS 1-1/4 minimum.
 - c. Unit Drain: Outlet at back or side near bottom.
- 3. Shower:
 - a. Capacity: Not less than 20 gpm for at least 15 minutes.
 - b. Supply Piping: NPS 1 with flow regulator and stay-open control valve.
 - c. Control-Valve Actuator: Pull rod.
 - d. Shower Head: 8-inch- minimum diameter, chrome-plated brass or stainless steel.
 - e. Mounting: Pedestal.
- 4. Eyewash Unit:
 - a. Capacity: Not less than 0.4 gpm for at least 15 minutes.
 - b. Supply Piping: NPS 1/2 with flow regulator and stay-open control valve.
 - c. Control-Valve Actuator: Paddle.
 - d. Spray-Head Assembly: Two receptor-mounted spray heads.
 - e. Receptor: Chrome-plated brass or stainless-steel bowl.
 - f. Mounting: Attached shower pedestal.
 - g. Drench-Hose Option: May be provided instead of eyewash unit.
 - 1) Capacity: Not less than 0.4 gpm for at least 15 minutes.
 - 2) Drench Hose: Hand-held spray head with squeeze-handle actuator and hose.
 - 3) Mounting: Bracket on shower pedestal.

2.2 WATER-TEMPERING EQUIPMENT

- A. Hot- and Cold-Water, Water-Tempering Equipment,:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Acorn Safety.
 - b. Armstrong International, Inc.
 - c. Bradley Corporation.
 - d. Encon Safety Products.
 - e. Guardian Equipment Co.
 - f. Haws Corporation.
 - g. Lawler Manufacturing Company, Inc.
 - h. Leonard Valve Company.
 - i. Powers.
 - j. Speakman Company.
 - k. Stingray Systems LLC.
 - 2. Description: Factory-fabricated equipment with thermostatic mixing valve.
 - a. Thermostatic Mixing Valve: Designed to provide 85 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-

water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.

b. Supply Connections: For hot and cold water.

PART 3 - EXECUTION

3.1 EMERGENCY PLUMBING FIXTURE INSTALLATION

- A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.
- B. Install fixtures level and plumb.
- C. Fasten fixtures to substrate.
- D. Install shutoff valves in water-supply piping to fixtures. Use ball or gate valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
 - 1. Exception: Omit shutoff valve on supply to group of plumbing fixtures that includes emergency equipment.
 - 2. Exception: Omit shutoff valve on supply to emergency equipment if prohibited by authorities having jurisdiction.
- E. Install shutoff valve and strainer in steam piping and shutoff valve in condensate return piping. Comply with requirements for steam and condensate piping specified in Section 23 22 13 "Steam and Condensate Heating Piping" and Section 23 22 16 "Steam and Condensate Piping Specialties."
- F. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Section 22 11 16 "Domestic Water Piping."
- G. Install thermometers in supply and outlet piping connections to water-tempering equipment. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."
- H. Install trap and waste piping on drain outlet of emergency equipment receptors that are indicated to be directly connected to drainage system. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- I. Install indirect waste piping on drain outlet of emergency equipment receptors that are indicated to be indirectly connected to drainage system. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- J. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations. Comply with requirements for escutcheons specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
- K. Fill self-contained fixtures with flushing fluid.

3.2 CONNECTIONS

- A. Connect cold-water-supply piping to plumbed emergency plumbing fixtures not having watertempering equipment. Comply with requirements for cold-water piping specified in Section 22 11 16 "Domestic Water Piping."
- B. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Section 22 11 16 "Domestic Water Piping."
- C. Directly connect emergency plumbing fixture receptors with trapped drain outlet to sanitary waste and vent piping. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
- D. Indirectly connect emergency plumbing fixture receptors without trapped drain outlet to sanitary waste or storm drainage piping.
- E. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.

3.3 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.
- B. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Adjust or replace fixture flow regulators for proper flow.
- B. Adjust equipment temperature settings.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

END OF SECTION 22 45 00

SECTION 22 47 16 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pressure water coolers and related components.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of pressure water cooler.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filter Cartridges: Equal to 300 percent of quantity installed for each type and size indicated, but no fewer than 3 of each.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

- A. Pressure Water Coolers: Wall mounted , wheelchair accessible.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkay Manufacturing Co.
 - b. Halsey Taylor.
 - c. Haws Corporation.
 - d. Larco Inc.
 - e. Tri Palm International, LLC.
 - 2. Cabinet: Single-level all stainless steel.
 - 3. Bubbler: One, with adjustable stream regulator, located on cabinet deck.
 - 4. Control: Push bar.
 - 5. Drain: Grid with NPS 1-1/4 tailpiece.
 - 6. Supply: NPS 3/8 with shutoff valve.

- 7. Waste Fitting: ASME A112.18.2/CSA B125.2, NPS 1-1/4 brass P-trap.
- 8. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
- 9. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 - a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 10. Capacities and Characteristics:
 - a. Cooled Water: 5 gph.
 - b. Ambient-Air Temperature: 90 deg F.
 - c. Inlet-Water Temperature: 80 deg F.
 - d. Cooled-Water Temperature: 50 deg F.
 - e. Electrical Characteristics:
 - 1) Volts: 120-V ac.
 - 2) Phase: Single.
 - 3) Hertz: 60.
- 11. Support: ASME A112.6.1M, Type I water-cooler carrier.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
- B. Examine walls and floors for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
- C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domesticwater distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
- D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

- E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 22 05 18 "Escutcheons for Plumbing Piping."
- F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
- C. Install ball or gate shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.15 "Gate Valves for Plumbing Piping."
- D. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

- A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.
- C. Provide protective covering for installed fixtures.
- D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 22 47 16

SECTION 23 00 00 - MECHANICAL GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 MECHANICAL REQUIREMENTS

- A. The mechanical requirements are supplemental to the General Requirements of these Specifications. The Mechanical Sections shall apply to phases of the work specified, shown on the Drawings, or required to provide for the complete installation of Mechanical Systems for this project.
- B. The work shall include all items, articles, materials, operations and methods listed, mentioned, or scheduled in these specifications and the accompanying drawings. All material, equipment, and labor shall be furnished together with all incidental items required by good practice to provide the complete systems described.
- C. Examine and refer to all Architectural, Civil, Structural, Electrical, Utility, Landscape and Mechanical drawings and specifications for construction conditions which may affect the mechanical work. Inspect the building site and existing facilities for verification of present conditions. Make proper provisions for these conditions in performance of the work and cost thereof.
- D. See general requirements for listed Alternate Bids. Note alternates listed and include any changes in work and price required to meet the requirements of the respective alternate.

1.2 CODES AND STANDARDS

- A. Work shall meet the requirements of the plans and specifications and shall not be less than the minimum requirements of applicable sections of the latest Codes and Standards of the following Organizations:
 - 1. American Gas Association (AGA)
 - 2. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE)
 - 3. American Society of Mechanical Engineers (ASME)
 - 4. American Water Works Association (AWWA)
 - 5. National Electrical Code (NEC)
 - 6. National Electrical Manufacturers Association (NEMA)
 - 7. National Fire Protection Association (NFPA)
 - 8. International Plumbing Code
 - 9. Occupational Safety & Health Act (OSHA)
 - 10. Plastic Pipe Institute (PPI)
 - 11. Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
 - 12. International Mechanical Code (IMC)
 - 13. International Building Code (IBC)
 - 14. Requirements of the Serving Utility Company
 - 15. Local and State Codes and Ordinances

1.3 FEES AND PERMITS

A. The Mechanical Contractor shall pay all fees and arrange for all permits required for work done under his contract and under his supervision by subcontract.

- B. All usage contracts between the Owner and the serving utilities company, such as membership and usage charges or fees, etc., for the purpose of obtaining the services for the utility company shall be applied for and paid for by the Owner.
- C. All permits and fees for connection to the utility, including inspection and staking costs imposed by the utility company or required for proper installation, and all necessary manholes, encasements, valves, service boxes, meters, meter housings or vaults complete as required by the utility company of jurisdictional agency, shall be applied for and paid by the Mechanical Contractor.
- D. Exception: The gas service from the main to and including the gas meter will be furnished and installed by the gas company and paid for by the Owner.

1.4 MATERIALS AND EQUIPMENT

- A. Manufacturers trade names and catalog numbers listed are intended to indicate the quality of equipment or materials desired. Manufacturers not listed must have prior approval. Written prior approval must be obtained from the Architect/Engineer ten (10) days prior to bid opening. Requests are to be submitted sufficiently ahead of the deadline to give ample time for examination. The items approved will be listed in an addendum and only this list of equipment will be accepted in lieu of specified products. Submittals must indicate the specific item or items to be furnished in lieu of those specified, together with complete technical and comparative data on specified items and proposed items. See list of prior approved manufacturers at end of this section.
- B. Mechanical equipment may be installed with manufacturer's standard finish and color except where specific color, finish or choice is indicated. If the manufacturer has no standard finish, equipment shall have a prime coat and two finish coats of gray enamel.
- C. This Contractor shall be responsible for materials and equipment installed under this contract. Contractor shall also be responsible for the protection of materials and equipment of others from damage as a result of his work.
- D. Manufactured material and equipment shall be applied, installed, connected, erected, used, cleaned and conditioned as directed by manufacturer unless herein specified to the contrary.
- E. This Contractor shall make the required arrangement with General Contractor for the introduction into the building of equipment too large to pass through finished openings.
- F. Store materials and equipment indoors at the job site or, if this is not possible, store on raised platforms and protect from the weather by means of waterproof covers. Coverings shall permit circulation of air around the materials to prevent condensation of moisture. Screen or cap openings in equipment to prevent the entry of vermin.

1.5 INTENT OF DRAWINGS

A. The drawings are partly diagrammatic and do not necessarily show exact location of piping and ductwork unless specifically dimensioned. Riser and other diagrams are schematic and do not necessarily show the physical arrangement of the equipment. They shall not be used for obtaining lineal runs of piping or ductwork, nor shall they be used for shop drawings for piping and ductwork fabrication or ordering. Discrepancies shown on different plans, or between plans and actual field conditions shall be brought to the attention of the Architect/Engineer for resolution.

1.6 RESPONSIBILITY

- A. The Mechanical Contractor shall be responsible for the installation of a satisfactory and complete system in accordance with the intent of the drawing and specifications. Provide, at no extra cost, all incidental items required for completion of the work even though they are not specifically mentioned or indicated on the drawings or in the specifications.
- B. The drawings do not attempt to show complete details of the building construction which affect the mechanical installation; and reference is therefore required to the Architectural, Civil, Structural, Landscape and Electrical drawings and specifications and to shop drawings of all trades for additional details which affect the installation of the work covered under this Division of the Contract.
- C. Location of mechanical system components shall be checked for conflicts with openings, structural members and components of other systems having fixed locations. In the event of any conflicts, the Architect/Engineer shall be consulted and his decision shall govern. Necessary changes shall be made at the Contractor's expense.
- D. Determine, and be responsible for, the proper location and character of inserts for hangers, chases, sleeves, and other openings in the construction required for the work, and obtain this information well in advance of the construction progress so work will not be delayed.
- E. Final location of inserts, hangers, etc., required for each installation, must be coordinated with facilities required for other installations to prevent interference.
- F. Take extreme caution not to install work that connects to equipment until such time as complete Shop Drawings of such equipment have been approved by the Architect/Engineer. Any work installed by the Contractor, prior to approval of Shop Drawings, will be at the Contractor's risk.
- G. At all times during the performance of this Contract, properly protect work from damage and protect the Owner's property from injury of loss. Make good any damage, injury or loss, except such as may be directly due to errors in the Bidding Documents or caused by Agents or Employees of the Owner. Adequately protect adjacent property as provided by law and the Bidding Documents. Provide and maintain passageways, guard fences, lights and other facilities for protection required by Public Authority or Local conditions.
- H. The Contractor shall be responsible for damages due to the work of their Contractors, to the building or its contents, people, etc.

1.7 REVIEW

A. All work and material is subject to review at any time by the Architect/Engineer or his representative. If the Architect/Engineer or his representative finds material that does not conform with these specifications or that is not properly installed or finished, correct the deficiencies in a manner satisfactory to the Architect/Engineer at the Contractor's expense.

1.8 WORKMANSHIP

A. GENERAL

1. Work under this contract shall be performed by workmen skilled in the particular trade, including work necessary to properly complete the installation in a workmanlike manner to present a neat and finished appearance.

B. EXCAVATION AND BACKFILL

- 1. Provide all excavating and backfilling as required, with backfilling only after approval of the Architect. Backfill to be free of all debris and decayable matter. See Excavation and Backfill requirements in DIVISION 31 EARTHWORK.
- C. CUTTING, PATCHING, AND FRAMING
 - 1. Obtain Architect's/Engineer's approval before performing any cutting on structural members or patching of building surfaces. Any damage to the building or equipment by this Contractor shall be the responsibility of this Contractor and shall be repaired by skilled craftsmen of the trades involved at the Contractor's expense.
 - 2. Chases, openings, sleeves, hangers, anchors, recesses, equipment pads, framing for equipment, provided by others only if so noted on the drawings. Otherwise, they will be provided by this Contractor for his work. Whether chases, etc., are provided by this Contractor or others, this Contractor is responsible for correct size and locations.

1.9 COORDINATION

A. This Contractor shall plan his work to proceed with a minimum interference with other trades and it shall be his responsibility to inform the General Contractor of all openings required in the building structure for installation of work, and to provide sleeves as required. Dimensions of equipment installed and/or provided by others shall be checked in order that correct clearances and connections may be made.

1.10 CLEAN UP

- A. Keep the premises free from accumulation of waste material or rubbish caused by his work or employees.
- B. Upon completion of work, remove materials, scraps and debris relative to his work and leave the premises, including tunnels, crawl spaces, and pipe chases in clean and orderly condition. Remove all dirt and debris from the interior and exterior of all devices and equipment. After construction is completed, wash all mechanical equipment.

1.11 DUST PROTECTION

A. Contractor will provide suitable dust protection for all existing areas prior to beginning of cutting or demolition. Contractor will obtain approval of partition from Owner before proceeding with work involved in these rooms.

1.12 TEMPORARY FACILITIES

- A. OFFICES
 - 1. Contractor shall provide a temporary office for himself and for the periodic use by the Architect\Engineer including:
 - a. Lights, heat, and telephone. (Pay telephone not permitted.)

B. REMOVAL

1. Contractor shall completely remove his temporary installations when no longer needed and the premises shall be completely clean, disinfected, patched, and refinished to match adjacent areas.

C. LADDERS AND SCAFFOLDS

1. The Contractor shall provide their own ladders, scaffolds, etc. of substantial construction for access to their work in various portions of the building as may be required. When no longer needed, they shall be removed by the Contractor.

D. PROTECTION DEVICES

1. The Contractor shall provide and maintain his own necessary barricades, fences, signal lights, etc., required by all governing authorities or shown on the drawings. When no longer needed, they shall be removed by the Contractor. The Contractor shall assume all responsibility for which the Owner may be held responsible because of lack of above items.

E. TEMPORARY WATER

1. The Contractor shall provide all water required by his trade for construction. Temporary drinking water shall be provided by Contractor from a proven safe source dispensed by single service containers, until such time as the construction water outlet has been installed, disinfected, and approved for drinking purposes.

F. TEMPORARY FIRE PROTECTION

1. The Contractor shall provide all necessary first-aid hand fire extinguishers for Class A, B, C and special hazards as may exist in his own work area only in accordance with good and safe practice and as required by jurisdictional safety authority. The Contractor shall provide general area fire extinguishers only.

1.13 SHOP DRAWINGS

- A. Provide eight (8) copies of manufacturer's literature and/or certified prints as soon as possible but within thirty (30) days after awarding of Contract, for items of materials, equipment, or systems where called for in specifications. Shop drawings and literature complete showing item used, size, dimensions, capacity, rough-in, etc., as required for complete check and installation. Manufacturers literature showing more than one item shall be clearly marked as to which item is being furnished or it will be rejected and returned without review.
- B. Each copy of each item submitted must be clearly marked as follows for purposes of identification and record. Submittals not marked (typewritten only) as described below will be rejected and returned without review.

Date: Name of Project: Branch of Work: Submitted by: Specification or Plan Reference:

C. Prior to their submission, each submittal shall be thoroughly checked by the Contractor for compliance with the Contract Document requirements, accuracy of dimensions, relationship to the

work of other trades, and conformance with sound, safe practices as to erection and installation. Each submittal shall then bear a stamp evidencing such checking and shall show corrections made, if any. Submittals requiring extensive corrections shall be revised before submission. Each submittal not stamped and signed by the Contractor evidencing such checking will be rejected and returned without review.

- D. All submittals will be examined when submitted in proper form for compliance. Such review shall not relieve the Contractor of responsibility for errors, for deviation from the contract Documents, nor for violation of sound safety practices.
- E. The Contractor shall keep in the field office one print of each submittal which has been reviewed and stamped by the Architect or Engineer.
- F. Submittals will be required for each item of material and equipment furnished as noted in specifications.
- G. Submittals which are incomplete relative to quality requirements, capacity, engineering data, dimensional data or detailed list of specialty or control equipment will be rejected. Lists shall include descriptive coding as specified or shown on drawings.
- H. Schedule of Shop Drawings.
 - 1. 23 05 16 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING
 - 2. 23 05 17 SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
 - 3. 23 05 18 ESCUTCHEONS FOR HVAC PIPING
 - 4. 23 05 19 METERS AND GAGES FOR HVAC PIPING
 - 5. 23 05 23.11 GLOBE VALVES FOR HVAC PIPING
 - 6. 23 05 23.12 BALL VALVES FOR HVAC PIPING
 - 7. 23 05 23.14 CHECK VALVES FOR HVAC PIPING
 - 8. 23 05 23.15 GATE VALVES FOR HVAC PIPING
 - 9. 23 05 29 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
 - 10. 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
 - 11. 23 07 13 DUCT INSULATION
 - 12. 23 07 19 HVAC PIPING INSULATION
 - 13. 23 09 23 DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC
 - a. 23 09 23.11 CONTROL VALVES
 - b. 23 09 23.12 CONTROL DAMPERS
 - c. 23 09 23.14 FLOW INSTRUMENTS
 - d. 23 09 23.16 GAS INSTRUMENTS
 - e. 23 09 23.23 PRESSURE INSTRUMENTS
 - f. 23 09 23.27 TEMPERATURE INSTRUMENTS
 - 14. 23 09 93.11 SEQUENCE OF OPERATIONS FOR HVAC DDC
 - 15. 23 11 23 FACILITY NATURAL-GAS PIPING
 - 16. 23 21 13 HYDRONIC PIPING
 - 17. 23 21 13.13 UNDERGROUND HYDRONIC PIPING
 - 18. 23 21 16 HYDRONIC PIPING SPECIALTIES
 - 19. 23 21 23 HYDRONIC PUMPS
 - 20. 23 25 00 HVAC WATER TREATMENT
 - 21. 23 31 13 METAL DUCTS
 - 22. 23 33 00 AIR DUCT ACCESSORIES
 - 23. 23 34 16 CENTRIFUGAL HVAC FANS
 - 24. 23 34 23 HVAC POWER VENTILATORS

- 25. 23 36 00 AIR TERMINAL UNITS
- 26. 23 37 13 DIFFUSERS, REGISTERS, AND GRILLES
- 27. 23 37 23 HVAC GRAVITY VENTILATORS
- 28. 23 38 13 COMMERCIAL-KITCHEN HOODS
- 29. 23 51 00 BREECHINGS, CHIMNEYS, AND STACKS
- 30. 23 52 16 CONDENSING BOILERS
- 31. 23 57 00 HEAT EXCHANGERS FOR HVAC
- 32. 23 64 23 AIR COOLED SCREW WATER CHILLERS
- 33. 23 73 13 MODULAR OUTDOOR CENTRAL-STATION AIR-HANDLING UNITS
- 34. 23 73 13.13 HEATING AND VENTILATING UNITS
- 35. 23 74 13 PACKAGED, OUTDOOR CENTRAL-STATION AIRE-HANDLING UNITS
- 36. 23 74 23.13 PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS
- 37. 23 82 39.16 PROPELLAR UNIT HEATERS
- 38. 23 85 00 WOOD SHOP EXHAUST COLLECTOR
- 39. 23 85 23 DUST COLLECTOR DUCTS
- I. Submittals shall be properly bound in a three-ring binder or equivalent method. Unbound submittals shall be returned without review.

1.14 OPERATION AND MAINTENANCE MANUALS

A. At the time orders are placed for any item of equipment requiring service or operating maintenance, the Contractor shall request the manufacturer furnish three (3) copies of OPERATION AND MAINTENANCE INSTRUCTIONS for each piece of equipment. These shall be included in the brochure of equipment.

1.15 BROCHURE OF EQUIPMENT

- A. Upon completion of work, prepare three copies of "Brochure of Equipment" containing data pertinent to equipment and systems on job. Binders containing materials shall be one or more three ring binders of sufficient number to hold all literature. Contained in binders shall be: Installation, maintenance, and operating instructions for each piece of equipment; parts lists; wiring diagrams; one copy of each shop drawing and literature submittal; record drawings, etc.
- B. All literature shall be clean, unused and filed under divider headings corresponding to the specifications.
- C. These brochures shall be submitted to the Architect/Engineer and approved by him before authorization of final payment.

1.16 AS-BUILT DRAWINGS

- A. The Contractor shall furnish to the Owner and Architect/Engineer a marked print showing the location of all concealed or underground pipe or conduit runs and other equipment installed other than as shown on the drawings. Dimension underground lines from established building lines. Indicate all installed pull boxes in conduit runs.
- B. The Contractor shall furnish to the Architect/Engineer a marked print showing the location of all mechanical equipment, plumbing fixtures, piping, ductwork, diffusers, grilles, etc. The location of any item which deviates from the bid documents shall be accurately drawn and dimensioned.

C. All underground piping and ductwork shall be dimensioned from nearest column and/or exterior walls. The location of all maintenance related items such as duct access doors, fire dampers, isolation valves, filters, etc., shall be highlighted on as built drawing.

1.17 PLACING SYSTEMS IN OPERATION

- A. At the completion of the work and at such time as the Owner shall direct, prior to final acceptance, the Contractor performing this work shall put into satisfactory operation the various systems installed under the specifications. At no additional cost to the Owner, furnish the services of a person completely familiar with the installations performed under this specification, to instruct the Owner's operating personnel in the proper operation and servicing of the equipment and systems. These services shall be available for a period of no less than one (1) day.
- B. Provide an 11 month training walkthrough and warranty review.

1.18 WARRANTY

- A. The Contractor shall guarantee that all materials and labor installed are new and of first quality and that any material or labor found defective shall be replaced without cost to the Owner within one (1) year after substantial completion of the Contract or one (1) full season of heating and cooling operation, whichever is the greater. The guarantee shall list the date of the beginning of the one (1) year period, which shall be the date that the Substantial Completion Certificate is issued.
- B. Any damage to the building, caused by defective work or material of the Contractor within the abovementioned period, shall be satisfactorily repaired without cost to the Owner.
- C. The guarantee does not include maintenance of equipment. The Owner shall accept full responsibility for proper operation and maintenance of equipment immediately upon substantial completion and occupancy of the building.
- D. Final acceptance by the Owner will not occur until all operating instructions are mounted in Equipment Rooms and Operating Personnel thoroughly indoctrinated in the operation of all mechanical equipment by the Contractor.
- E. Any equipment, including heat exchangers, boilers, pumps, air handlers, motors, etc., used for temporary heat, shall be brought up to a new condition before final acceptance by the Owner and shall be guaranteed by the Contractor as new equipment.

END OF SECTION 23 00 00

SECTION 23 05 00 - COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Sleeves.
 - 5. Grout.
 - 6. Equipment installation requirements common to equipment sections.
 - 7. Supports and anchorages.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.3 SUBMITTALS

A. Welding certificates.

1.4 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."

- 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series or BAg1, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. CPVC Piping: ASTM F 493.
 - 2. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.

- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
- E. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
- F. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
- B. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- C. Pressure Plates: Carbon steel. Include two for each sealing element.
- D. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.
- E. Molded PVC: Permanent, with nailing flange for attaching to wooden forms.
- F. PVC Pipe: ASTM D 1785, Schedule 40.
- G. Molded PE: Reusable, PE, tapered-cup shaped, and smooth-outer surface with nailing flange for attaching to wooden forms.

2.6 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 Section "Penetration Firestopping" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

- 1. Comply with ASTM F 402, for safe-handling practice of cleaners, primers, and solvent cements.
- 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
- PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
- 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- J. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- K. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- L. PE Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End Pipe and Fittings: Use butt fusion.
 - 2. Plain-End Pipe and Socket Fittings: Use socket fusion.
- M. Fiberglass Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.3 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 05 Section "Metal Fabrications" for structural steel.

- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.6 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor HVAC materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.7 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 23 05 00
SECTION 23 05 13 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.

- 1. For motors with 2:1 speed ratio, consequent pole, single winding.
- 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Rotor: Random-wound, squirrel cage.
- F. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- G. Temperature Rise: Match insulation rating.
- H. Insulation: Class F.
- I. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- J. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: [Ratings, characteristics, and features coordinated with and approved by controller manufacturer.]
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13

SECTION 23 05 16 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Slip-joint packed expansion joints.
 - 2. Expansion-compensator packless expansion joints.
 - 3. Pipe loops and swing connections.
 - 4. Alignment guides and anchors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Product certificates.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 PACKED EXPANSION JOINTS

- A. Slip-Joint Packed Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Adsco Manufacturing LLC.
 - b. Advanced Thermal Systems, Inc.
 - c. Hyspan Precision Products, Inc.
 - d. Mason Industries, Inc.
 - 2. Standard: ASTM F 1007.
 - 3. Material: Carbon steel with asbestos-free PTFE packing.
 - 4. Design: With internal guide and injection device for repacking under pressure. Include drip connection if used for steam piping.
 - 5. Configuration: Single joint class(es) unless otherwise indicated.
 - 6. End Connections: Flanged or weld ends to match piping system.

2.2 PACKLESS EXPANSION JOINTS

- A. Metal, Expansion-Compensator Packless Expansion Joints:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Mason Industries, Inc.
 - b. Metraflex Company (The).
 - c. Unaflex.
 - 2. Minimum Pressure Rating: 175 psig unless otherwise indicated.
 - 3. Configuration for Copper Tubing: Two-ply, phosphor-bronze bellows with copper pipe ends.
 - a. End Connections for Copper Tubing NPS 2 and Smaller: Solder joint or threaded.
 - b. End Connections for Copper Tubing NPS 2-1/2 to NPS 4: Threaded.
 - 4. Configuration for Steel Piping: Two-ply, stainless-steel bellows; steel-pipe end connections; and carbon-steel shroud.
 - a. End Connections for Steel Pipe NPS 2 and Smaller: Threaded.
 - b. End Connections for Steel Pipe NPS 2-1/2 to NPS 4: Flanged.

2.3 ALIGNMENT GUIDES AND ANCHORS

- A. Alignment Guides:
 - 1. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.

B. Anchor Materials:

- 1. Steel Shapes and Plates: ASTM A 36/A 36M.
- 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
- 3. Washers: ASTM F 844, steel, plain, flat washers.
- 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Stud: Threaded, zinc-coated carbon steel.
 - b. Expansion Plug: Zinc-coated steel.
 - c. Washer and Nut: Zinc-coated steel.
- 5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, two-component epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - b. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud unless otherwise indicated.
 - c. Washer and Nut: Zinc-coated steel.

PART 3 - EXECUTION

- 3.1 EXPANSION-JOINT INSTALLATION
 - A. Install expansion joints of sizes matching sizes of piping in which they are installed.
 - B. Install packed-type expansion joints with packing suitable for fluid service.
 - C. Install metal-bellows expansion joints according to EJMA's "Standards of the Expansion Joint Manufacturers Association, Inc."

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
- C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.
- D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.

- B. Install two guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.
- C. Attach guides to pipe and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, Ubolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 23 05 16

SECTION 23 05 17 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.
- E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Sleeve-seal systems in this article are used for piping penetrations in slabs-on-grade and below grade in exterior walls. These systems are available for NPS 1/2 to NPS 48 (DN 15 to DN 1200) piping.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.

- 5. Proco Products, Inc.
- C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: NBR interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel or Stainless steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydrauliccement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 07 92 00 "Joint Sealants."

E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section "07 84 10 Through-Penetration Firestop Systems".

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: PVC-pipe sleeves.
 - b. Piping NPS 6 and Larger: PVC-pipe sleeves.

- 5. Interior Partitions:
 - a.
 - Piping Smaller Than NPS 6: PVC-pipe sleeves. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves. b.

END OF SECTION 23 05 17

SECTION 23 05 18 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.
 - 2. Floor plates.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.

2.2 FLOOR PLATES

A. One-Piece Floor Plates: Cast-iron flange with holes for fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type.

- d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- e. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stampedsteel type.
- f. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- g. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type.
- h. Bare Piping in Unfinished Service Spaces: One-piece, cast-brass type with polished, chrome-plated finish.
- i. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type.
- j. Bare Piping in Equipment Rooms: One-piece, cast-brass type with polished, chromeplated finish.
- k. Bare Piping in Equipment Rooms: One-piece, stamped-steel type.
- C. Install floor plates for piping penetrations of equipment-room floors.
- D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. New Piping: One-piece, floor-plate type.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 23 05 18

SECTION 23 05 19-METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bimetallic-actuated thermometers.
 - 2. Liquid-in-glass thermometers.
 - 3. Thermowells.
 - 4. Dial-type pressure gages.
 - 5. Gage attachments.
 - 6. Pitot-tube flowmeters.
 - 7. Turbine flowmeters.
 - 8. Venturi flowmeters.
 - 9. Impeller-turbine, thermal-energy meters.

1.2 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Wiring Diagrams: For power, signal, and control wiring.
- C. Product certificates.
- D. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 BIMETALLIC-ACTUATED THERMOMETERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ashcroft Inc.
 - 2. Ernst Flow Industries.
 - 3. Marsh Bellofram.
 - 4. Miljoco Corporation.
 - 5. Nanmac Corporation.
 - 6. Noshok.
 - 7. Palmer Wahl Instrumentation Group.
 - 8. REOTEMP Instrument Corporation.
 - 9. Tel-Tru Manufacturing Company.
 - 10. Trerice, H. O. Co.
 - 11. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 12. Weiss Instruments, Inc.
 - 13. WIKA Instrument Corporation USA.

- 14. Winters Instruments U.S.
- B. Standard: ASME B40.200.
- C. Case: Liquid-filled and sealed type(s); stainless steel with 3-inch nominal diameter.
- D. Dial: Nonreflective aluminum with permanently etched scale markings and scales in deg F.
- E. Connector Type(s): Union joint, adjustable angle, with unified-inch screw threads.
- F. Connector Size: 1/2 inch, with ASME B1.1 screw threads.
- G. Stem: 0.25 or 0.375 inch in diameter; stainless steel.
- H. Window: Plain glass.
- I. Ring: Stainless steel.
- J. Element: Bimetal coil.
- K. Pointer: Dark-colored metal.
- L. Accuracy: Plus or minus 1 percent of scale range.

2.2 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Flo Fab Inc.
 - b. Miljoco Corporation.
 - c. Palmer Wahl Instrumentation Group.
 - d. Tel-Tru Manufacturing Company.
 - e. Trerice, H. O. Co.
 - f. Weiss Instruments, Inc.
 - g. Winters Instruments U.S.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: Glass.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.3 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.4 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.5 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Ernst Flow Industries.
 - d. Flo Fab Inc.
 - e. Marsh Bellofram.
 - f. Miljoco Corporation.
 - g. Noshok.
 - h. Palmer Wahl Instrumentation Group.
 - i. REOTEMP Instrument Corporation.
 - j. Tel-Tru Manufacturing Company.
 - k. Trerice, H. O. Co.
 - I. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - m. Weiss Instruments, Inc.
 - n. WIKA Instrument Corporation USA.
 - o. Winters Instruments U.S.
 - 2. Standard: ASME B40.100.

- 3. Case: Liquid-filled Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.6 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and pistontype surge-dampening device. Include extension for use on insulated piping.
- B. Siphons: Loop-shaped section of stainless-steel pipe with NPS 1/4 or NPS 1/2 pipe threads.
- C. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.7 FLOWMETERS

- A. Venturi Flowmeters:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABB; Instrumentation and Analytical.
 - b. Gerand Engineering Co.
 - c. Hyspan Precision Products, Inc.
 - d. Preso Meters; a division of Racine Federated Inc.
 - e. S. A. Armstrong Limited; Armstrong Pumps Inc.
 - f. Victaulic Company.
 - 2. Description: Flowmeter with calibrated flow-measuring element, hoses or tubing, fittings, valves, indicator, and conversion chart.
 - 3. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
 - 4. Sensor: Venturi-type, calibrated, flow-measuring element; for installation in piping.
 - a. Design: Differential-pressure-type measurement for water.
 - b. Construction: Bronze, brass, or factory-primed steel, with brass fittings and attached tag with flow conversion data.
 - c. Minimum Pressure Rating: 250 psig.
 - d. Minimum Temperature Rating: 250 deg F.
 - e. End Connections for NPS 2 and Smaller: Threaded.
 - f. End Connections for NPS 2-1/2 and Larger: Flanged or welded.
 - g. Flow Range: Flow-measuring element and flowmeter shall cover operating range of equipment or system served.
 - 5. Portable Indicators: Hand-held, differential-pressure type, calibrated for connected flowmeter element and having two 12-foot hoses, with carrying case.

- a. Scale: Gallons per minute.
- b. Accuracy: Plus or minus 2 percent between 20 and 80 percent of scale range.
- 6. Display: Shows rate of flow.
- 7. Conversion Chart: Flow rate data compatible with sensor.
- 8. Operating Instructions: Include complete instructions with each flowmeter.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- I. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- J. Install valve and syphon fitting in piping for each pressure gage for steam.
- K. Install flow indicators in piping systems in accessible positions for easy viewing.
- L. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- M. Install flowmeter elements in accessible positions in piping systems.
- N. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- O. Install permanent indicators on walls or brackets in accessible and readable positions.
- P. Install connection fittings in accessible locations for attachment to portable indicators.
- Q. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic coil in air-handling units.
 - 2. Outside-, return-, supply-, and mixed-air ducts.

- R. Install pressure gages in the following locations:
 - 1. Discharge of each pressure-reducing valve.
 - 2. Inlet and outlet of each hot/chilled-water connection.
 - 3. Across each pump per drawing details.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.
- C. Connect flowmeter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlet and outlet of each hydronic zone shall be one of the following:
 - 1. Liquid-filled, bimetallic-actuated type.
 - 2. Industrial-style, liquid-in-glass type.
- B. Thermometers at inlet and outlet of each hydronic coil in air-handling units and built-up central systems shall be one of the following:
 - 1. Liquid-filled, bimetallic-actuated type.
 - 2. Industrial-style, liquid-in-glass type.
- C. Thermometers at outside-, return-, supply-, and mixed-air ducts shall be one of the following:
 - 1. Liquid-filled, bimetallic-actuated type.
 - 2. Industrial-style, liquid-in-glass type.
- D. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
- B. Scale Range for Heating, Hot-Water Piping: 20 to 240 deg F.
- C. Scale Range for Air Ducts: Minus 40 to plus 160 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at discharge of each pressure-reducing valve shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.
- B. Pressure gages at inlet and outlet of each chilled-water connection shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.
- C. Pressure gages at suction and discharge of each pump shall be one of the following:
 - 1. Liquid-filled, direct-mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 psi.
- B. Scale Range for Heating, Hot-Water Piping: 0 to 100 psi.
- 3.8 FLOWMETER SCHEDULE
 - A. Flowmeters for Chilled-Water Piping: Venturi type.

END OF SECTION 23 05 19

SECTION 23 05 23.11 - GLOBE VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bronze globe valves.
 - 2. Iron globe valves.
 - 3. Chainwheels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded-end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder-joint connections.
 - 5. ASME B31.1 for power piping valves.
 - 6. ASME B31.9 for building services piping valves.
- C. Refer to HVAC valve schedule articles for applications of valves.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valves in Insulated Piping: With 2-inch stem extensions.

2.2 BRONZE GLOBE VALVES

- A. Class 125 Bronze Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Crane; Crane Energy Flow Solutions.
- b. Hammond Valve.
- c. Jomar Valve.
- d. KITZ Corporation.
- e. Milwaukee Valve Company.
- f. NIBCO INC.
- g. Powell Valves.
- h. Red-White Valve Corporation.
- i. Stockham; Crane Energy Flow Solutions.
- j. Valve Solutions, Inc.
- k. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem and Disc: Bronze.
 - f. Packing: Asbestos free.
 - g. Handwheel: Malleable iron.
- B. Class 150 Bronze Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. KITZ Corporation.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Powell Valves.
 - g. Red-White Valve Corporation.
 - h. Valve Solutions, Inc.
 - i. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 300 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and union-ring bonnet.
 - d. Ends: Threaded.
 - e. Stem: Bronze.
 - f. Disc: Bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.
- 2.3 IRON GLOBE VALVES
 - A. Class 125 Iron Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Crane; Crane Energy Flow Solutions.
- b. Hammond Valve.
- c. Jenkins Valves; Crane Energy Flow Solutions.
- d. KITZ Corporation.
- e. Milwaukee Valve Company.
- f. NIBCO INC.
- g. Powell Valves.
- h. Red-White Valve Corporation.
- i. Stockham; Crane Energy Flow Solutions.
- j. Valve Solutions, Inc.
- k. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-85, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Packing and Gasket: Asbestos free.
 - g. Operator: Handwheel or chainwheel.
- B. Class 250 Iron Globe Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Stockham; Crane Energy Flow Solutions.
 - g. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-85, Type I.
 - b. CWP Rating: 500 psig.
 - c. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - d. Ends: Flanged.
 - e. Trim: Bronze.
 - f. Packing and Gasket: Asbestos free.
 - g. Operator: Handwheel or chainwheel.

2.4 CHAINWHEELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Babbitt Steam Specialty Co.
 - 2. Roto Hammer Industries.
 - 3. Trumbull Industries.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for globe valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Throttling Service except Steam: Globe valves.
 - 2. Throttling Service, Steam: Globe valves.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze globe valves, Class 150, bronze disc, with soldered ends.
- B. Pipe NPS 2-1/2 and Larger: Iron globe valves, Class 250 with flanged ends.

3.5 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze globe valves, Class 150, bronze disc, with soldered ends.
- B. Pipe NPS 2-1/2 and Larger: Iron globe valves, Class 250 with flanged ends.

END OF SECTION 23 05 23.11

SECTION 23 05 23.12 - BALL VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Brass ball valves.
 - 2. Bronze ball valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded-end valves.
 - 2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 3. ASME B16.18 for solder-joint connections.
 - 4. ASME B31.1 for power piping valves.
 - 5. ASME B31.9 for building services piping valves.
- C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Refer to HVAC valve schedule articles for applications of valves.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 - 2. Handlever: For quarter-turn valves smaller than NPS 4.
- H. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.

- 2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.
- 3. Memory stops that are fully adjustable after insulation is applied.
- I. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRASS BALL VALVES

- A. One-Piece Brass Ball Valves:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Forged brass.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Brass.
 - h. Ball: Chrome-plated brass.
 - i. Port: Reduced.
- B. Two-Piece Brass Ball Valves with Full Port and Brass Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Forged brass.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Brass.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
- C. Two-Piece Brass Ball Valves with Full Port and Stainless-Steel Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Forged brass.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.
- D. Two-Piece Brass Ball Valves with Regular Port and Brass Trim:

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Forged brass.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Brass.
 - i. Ball: Chrome-plated brass.
 - j. Port: Regular.
- E. Two-Piece Brass Ball Valves with Regular Port and Stainless-Steel Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Brass or bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Regular.

2.3 BRONZE BALL VALVES

- A. One-Piece Bronze Ball Valves with Bronze Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 400 psig.
 - c. Body Design: One piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.
 - f. Seats: PTFE.
 - g. Stem: Bronze.
 - h. Ball: Chrome-plated brass.
 - i. Port: Reduced.
- B. One-Piece Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. CWP Rating: 600 psig.
 - c. Body Design: One piece.
 - d. Body Material: Bronze.
 - e. Ends: Threaded.

- f. Seats: PTFE.
- g. Stem: Stainless steel.
- h. Ball: Stainless steel, vented.
- i. Port: Reduced.
- C. Two-Piece Bronze Ball Valves with Full Port and Bronze or Brass Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
- D. Two-Piece Bronze Ball Valves with Full Port and Stainless-Steel Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.
- E. Two-Piece Bronze Ball Valves with Regular Port and Bronze or Brass Trim:
 - 1. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Regular.
- F. Two-Piece Bronze Ball Valves with Regular Port and Stainless-Steel Trim:
 - 1. Description:

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig.
- c. CWP Rating: 600 psig.
- d. Body Design: Two piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- j. Port: Regular.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.

3.2 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.

3.3 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: One piece, full port, brass with brass trim.
 - 1. Valves may be provided with solder-joint ends instead of threaded ends.

3.4 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: One piece, full port, brass with brass trim.
 - 1. Valves may be provided with solder-joint ends instead of threaded ends.

END OF SECTION 23 05 23.12

SECTION 23 05 23.14 - CHECK VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bronze lift check valves.
 - 2. Bronze swing check valves.
 - 3. Iron swing check valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded-end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder joint.
 - 5. ASME B31.1 for power piping valves.
 - 6. ASME B31.9 for building services piping valves.
- C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Class 125, Bronze Swing Check Valves with Bronze Disc:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Valve, Inc.
 - b. Crane; Crane Energy Flow Solutions.
 - c. Hammond Valve.
 - d. Jenkins Valves; Crane Energy Flow Solutions.
 - e. Jomar Valve.
 - f. KITZ Corporation.
 - g. Macomb Groups (The).
 - h. Milwaukee Valve Company.
 - i. NIBCO INC.
 - j. Powell Valves.
 - k. Red-White Valve Corporation.
 - I. Stockham; Crane Energy Flow Solutions.
 - m. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- B. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. KITZ Corporation.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Red-White Valve Corporation.
 - h. Stockham; Crane Energy Flow Solutions.
 - i. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: PTFE.
- C. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- a. American Valve, Inc.
- b. Crane; Crane Energy Flow Solutions.
- c. Jenkins Valves; Crane Energy Flow Solutions.
- d. KITZ Corporation.
- e. Macomb Groups (The).
- f. Milwaukee Valve Company.
- g. NIBCO INC.
- h. Red-White Valve Corporation.
- i. Stockham; Crane Energy Flow Solutions.
- 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- D. Class 150, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: PTFE.

2.3 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. KITZ Corporation.
 - e. Legend Valve & Fitting, Inc.
 - f. Macomb Groups (The).

- g. Milwaukee Valve Company.
- h. NIBCO INC.
- i. Powell Valves.
- j. Red-White Valve Corporation.
- k. Stockham; Crane Energy Flow Solutions.
- I. Sure Flow Equipment Inc.
- m. Watts; a Watts Water Technologies company.
- 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Bronze.
 - h. Gasket: Asbestos free.
- B. Class 125, Iron Swing Check Valves with Nonmetallic-to-Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Stockham; Crane Energy Flow Solutions.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Composition.
 - h. Seat Ring: Bronze.
 - i. Disc Holder: Bronze.
 - j. Disc: PTFE.
 - k. Gasket: Asbestos free.
- C. Class 250, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Stockham; Crane Energy Flow Solutions.
 - g. Watts; a Watts Water Technologies company.
 - 2. Description:

- a. Standard: MSS SP-71, Type I.
- b. NPS 2-1/2 to NPS 12, CWP Rating: 500 psig.
- c. NPS 14 to NPS 24, CWP Rating: 300 psig.
- d. Body Design: Clear or full waterway.
- e. Body Material: ASTM A 126, gray iron with bolted bonnet.
- f. Ends: Flanged.
- g. Trim: Bronze.
- h. Gasket: Asbestos free.

2.4 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

- A. Class 125, Iron Swing Check Valves with Lever- and Spring-Closure Control:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Bronze.
 - h. Gasket: Asbestos free.
 - i. Closure Control: Factory-installed, exterior lever and spring.
- B. Class 125, Iron Swing Check Valves with Lever and Weight-Closure Control:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Hammond Valve.
 - c. Jenkins Valves; Crane Energy Flow Solutions.
 - d. Milwaukee Valve Company.
 - e. NIBCO INC.
 - f. Stockham; Crane Energy Flow Solutions.
 - g. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Clear or full waterway.
 - e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - f. Ends: Flanged.
 - g. Trim: Bronze.
 - h. Gasket: Asbestos free.

i. Closure Control: Factory-installed, exterior lever and weight.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install swing check valves for proper direction of flow in horizontal position with hinge pin level.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring; metal-seat check valves.
- B. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Swing Check Valves: Class 150, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Swing Check Valves: Class 250, metal seats.
 - 3. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12: Class 125, lever and spring.

3.5 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Swing Check Valves: Class 150, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Swing Check Valves: Class 250, metal seats.
 - 3. Iron Swing Check Valves with Closure Control, NPS 2-1/2 to NPS 12: Class 125, lever and spring.

END OF SECTION 23 05 23.14

SECTION 23 05 23.15 - GATE VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Bronze gate valves.
 - 2. Iron gate valves.
 - 3. Chainwheels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of valve.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded-end valves.
 - 2. ASME B16.1 for flanges on iron valves.
 - 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 4. ASME B16.18 for solder joint.
 - 5. ASME B31.1 for power piping valves.
 - 6. ASME B31.9 for building services piping valves.
- C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- D. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- E. Valve Sizes: Same as upstream piping unless otherwise indicated.
- F. RS Valves in Insulated Piping: With 2-inch stem extensions.
- G. Valve Bypass and Drain Connections: MSS SP-45.
- H. Where gate valves are specified, but will not fit due to large dimensions, provide ball valves. Butterfly valves will not be allowed.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.2 BRONZE GATE VALVES

- A. Class 125, NRS, Bronze Gate Valves:
 - 1. American Valve, Inc.
 - 2. Crane; Crane Energy Flow Solutions.
 - 3. Hammond Valve.
 - 4. Jenkins Valves; Crane Energy Flow Solutions.
 - 5. Jomar Valve
 - 6. KITZ Corporation.
 - 7. Macomb Groups (The).
 - 8. Milwaukee Valve Company.
 - 9. NIBCO INC.
 - 10. Powell Valves.
 - 11. Red-White Valve Corporation.
 - 12. Stockham; Crane Energy Flow Solutions.
 - 13. Watts; a Watts Water Technologies company.
 - 14. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron.
- B. Class 125, RS, Bronze Gate Valves:
 - 1. American Valve, Inc.
 - 2. Crane; Crane Energy Flow Solutions.
 - 3. Hammond Valve.
 - 4. Jenkins Valves; Crane Energy Flow Solutions.
 - 5. KITZ Corporation.
 - 6. Macomb Groups (The).
 - 7. Milwaukee Valve Company.
 - 8. NIBCO INC.
 - 9. Powell Valves.
 - 10. Stockham; Crane Energy Flow Solutions.
 - 11. Watts; a Watts Water Technologies company.
 - 12. Description:
 - a. Standard: MSS SP-80, Type 2.
 - b. CWP Rating: 200 psig.
 - c. Body Material: ASTM B 62, bronze with integral seat and screw-in bonnet.
 - d. Ends: Threaded or solder joint.
 - e. Stem: Bronze.
 - f. Disc: Solid wedge; bronze.
 - g. Packing: Asbestos free.
 - h. Handwheel: Malleable iron, bronze, or aluminum.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.3 IRON GATE VALVES

- A. Class 125, NRS, Iron Gate Valves:
 - 1. Crane; Crane Energy Flow Solutions.
 - 2. Flo Fab inc.
 - 3. Hammond Valve.
 - 4. Jenkins Valves; Crane Energy Flow Solutions.
 - 5. KITZ Corporation.
 - 6. Legend Valve & Fitting, Inc.
 - 7. Macomb Groups (The).
 - 8. Milwaukee Valve Company.
 - 9. NIBCO INC.
 - 10. Powell Valves.
 - 11. Red-White Valve Corporation.
 - 12. Stockham; Crane Energy Flow Solutions.
 - 13. Watts; a Watts Water Technologies company.
 - 14. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Disc: Solid wedge.
 - h. Packing and Gasket: Asbestos free.
- B. Class 125, OS&Y, Iron Gate Valves:
 - 1. Crane; Crane Energy Flow Solutions.
 - 2. Flo Fab inc.
 - 3. Hammond Valve.
 - 4. Jenkins Valves; Crane Energy Flow Solutions.
 - 5. KITZ Corporation.
 - 6. Legend Valve & Fitting, Inc.
 - 7. Macomb Groups (The).
 - 8. Milwaukee Valve Company.
 - 9. NIBCO INC.
 - 10. Powell Valves.
 - 11. Red-White Valve Corporation.
 - 12. Stockham; Crane Energy Flow Solutions.
 - 13. Watts; a Watts Water Technologies company.
 - 14. Description:
 - a. Standard: MSS SP-70, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Disc: Solid wedge.
 - h. Packing and Gasket: Asbestos free.

2.4 CHAINWHEELS

- A. Babbitt Steam Specialty Co.
- B. Roto Hammer Industries.
- C. Trumbull Industries
- D. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to hand wheels.
 - 1. Sprocket Rim with Chain Guides: Ductile iron, of type and size required for valve.
 - 2. Chain: Hot-dip-galvanized steel, of size required to fit sprocket rim.

PART 3 - EXECUTION

3.1 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install chainwheels on operators for gate valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.

3.2 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Gate valves.
- B. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends, except where solder-joint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends, except where threaded valve-end option is indicated in valve schedules below.

- 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
- 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
- 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends, except where threaded valve-end option is indicated in valve schedules below.
- 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze Valves, Class 125, RS] with soldered ends.
- B. Pipe NPS 2-1/2 and Larger: Iron Gate Valves, Class 125, OS&Y.

3.5 HEATING-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze Valves, Class 125, RS with soldered ends.
- B. Pipe NPS 2-1/2 and Larger: Iron Gate Valves, Class 125, OS&Y.

END OF SECTION 23 05 23.13

SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Steel pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Equipment supports.

1.2 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 PERFORMANCE REQUIREMENTS

- A. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Steel pipe hangers and supports.
 - 2. Thermal-hanger shield inserts.
 - 3. Powder-actuated fastener systems.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer for all seismic hanger systems. Show fabrication and installation details and include calculations for the following:
 - 1. Trapeze pipe hangers. Include Product Data for components.
 - 2. Metal framing systems. Include Product Data for components.
 - 3. Equipment supports.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 STEEL PIPE HANGERS AND SUPPORTS

- A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.
- B. Available Manufacturers:
 - 1. AAA Technology & Specialties Co., Inc.
 - 2. Bergen-Power Pipe Supports.
 - 3. B-Line Systems, Inc.; a division of Cooper Industries.
 - 4. Carpenter & Paterson, Inc.
 - 5. Empire Industries, Inc.
 - 6. ERICO/Michigan Hanger Co.
 - 7. Globe Pipe Hanger Products, Inc.
 - 8. Grinnell Corp.
 - 9. GS Metals Corp.
 - 10. National Pipe Hanger Corporation.
 - 11. PHD Manufacturing, Inc.
 - 12. PHS Industries, Inc.
 - 13. Piping Technology & Products, Inc.
 - 14. Tolco Inc.
- C. Galvanized, Metallic Coatings: Pregalvanized or hot dipped.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- E. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion for support of bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.4 METAL FRAMING SYSTEMS

- A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.
- B. Available Manufacturers:
 - 1. B-Line Systems, Inc.; a division of Cooper Industries.
 - 2. ERICO/Michigan Hanger Co.; ERISTRUT Div.
 - 3. GS Metals Corp.
 - 4. Power-Strut Div.; Tyco International, Ltd.
 - 5. Thomas & Betts Corporation.
 - 6. Tolco Inc.
 - 7. Unistrut Corp.; Tyco International, Ltd.
- C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
- D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.5 THERMAL-HANGER SHIELD INSERTS

- A. Description: 100-psig- minimum, compressive-strength insulation insert encased in sheet metal shield.
- B. Available Manufacturers:
 - 1. Carpenter & Paterson, Inc.
 - 2. ERICO/Michigan Hanger Co.
 - 3. PHS Industries, Inc.
 - 4. Pipe Shields, Inc.
 - 5. Rilco Manufacturing Company, Inc.
 - 6. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass with vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate or ASTM C 552, Type II cellular glass.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

- 1. Available Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Available Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

- E. Use padded hangers for piping that is subject to scratching.
- F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.
 - 6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 - 7. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
 - 8. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.

- 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.
- M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:

- 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.
- M. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.1 for power piping and ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - 5. Insert Material: Length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.6 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizingrepair paint to comply with ASTM A 780.

END OF SECTION 23 05 29

SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 3. Letter Color: Black.
 - 4. Background Color: White.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets.

- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Plastic Labels for Equipment:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Brimar Industries, Inc.
 - c. Carlton Industries, LP.
 - d. Champion America.
 - e. Craftmark Pipe Markers.
 - f. emedco.
 - g. Kolbi Pipe Marker Co.
 - h. LEM Products Inc.
 - i. Marking Services, Inc.
 - j. Seton Identification Products.
 - 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 3. Letter Color: Black.
 - 4. Background Color: White.
 - 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 - 8. Fasteners: Stainless-steel rivets.
 - 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Brimar Industries, Inc.
 - 3. Carlton Industries, LP.
 - 4. Champion America.
 - 5. Craftmark Pipe Markers.
 - 6. emedco.
 - 7. LEM Products Inc.
 - 8. Marking Sevices Inc.

- 9. National Marker Company.
- 10. Seton Identification Products.
- 11. Stranco, Inc.
- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- C. Letter Color: Black.
- D. Background Color: White.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- H. Fasteners: Stainless-steel rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
 - 2. Brady Corporation.
 - 3. Brimar Industries, Inc.
 - 4. Carlton Industries, LP.
 - 5. Champion America.
 - 6. Craftmark Pipe Markers.
 - 7. emedco.
 - 8. Kolbi Pipe Marker Co.
 - 9. LEM Products Inc.
 - 10. Marking Sevices Inc.
 - 11. Seton Identification Products.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.
- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

- 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
- 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 DUCT LABELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Brimar Industries, Inc.
 - 3. Carlton Industries, LP.
 - 4. Champion America.
 - 5. Craftmark Pipe Markers.
 - 6. emedco.
 - 7. Kolbi Pipe Marker Co.
 - 8. LEM Products Inc.
 - 9. Marking Sevices Inc.
 - 10. Seton Identification Products.
- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- C. Letter Color: Black.
- D. Background Color: White.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- H. Fasteners: Stainless-steel rivets.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping: Blue letters on a safety-green background.
 - 2. Condenser-Water Piping: White letters on a safety-green background.
 - 3. Heating Water Piping: Red letters on a safety-green background.
 - 4. Snow Melt/Radiant floor piping: White letters on a safety-green background

3.4 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
- B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

END OF SECTION 23 05 53

SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Variable-flow hydronic systems.

1.2 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

1.4 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by NEBB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by NEBB as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect, Owner.

- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- E. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- F. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."
- PART 2 PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 23 31 13 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.

- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," Section 23 07 19 "HVAC Piping Insulation."

- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heatrecovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum set-point airflow with the

remainder at maximum airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.

- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.
 - 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
 - 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
 - 7. Measure static pressure at the most critical terminal unit and adjust the static-pressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
 - 8. Record final fan-performance data.
- C. Pressure-Dependent, Variable-Air-Volume Systems without Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Balance variable-air-volume systems the same as described for constant-volume air systems.
 - 2. Set terminal units and supply fan at full-airflow condition.
 - 3. Adjust inlet dampers of each terminal unit to indicated airflow and verify operation of the staticpressure controller. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 4. Readjust fan airflow for final maximum readings.
 - 5. Measure operating static pressure at the sensor that controls the supply fan if one is installed, and verify operation of the static-pressure controller.
 - 6. Set supply fan at minimum airflow if minimum airflow is indicated. Measure static pressure to verify that it is being maintained by the controller.
 - 7. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.

- a. If air outlets are out of balance at minimum airflow, report the condition but leave the outlets balanced for maximum airflow.
- 8. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- D. Pressure-Dependent, Variable-Air-Volume Systems with Diversity: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set system at maximum indicated airflow by setting the required number of terminal units at minimum airflow. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
 - 2. Adjust supply fan to maximum indicated airflow with the variable-airflow controller set at maximum airflow.
 - 3. Set terminal units at full-airflow condition.
 - 4. Adjust terminal units starting at the supply-fan end of the system and continuing progressively to the end of the system. Adjust inlet dampers of each terminal unit to indicated airflow. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constant-volume air systems.
 - 5. Adjust terminal units for minimum airflow.
 - 6. Measure static pressure at the sensor.
 - 7. Measure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.9 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.10 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
 - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
 - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
 - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
 - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
 - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
 - 6. Capacity: Calculate in tons of cooling.
 - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.11 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.12 PROCEDURES FOR BOILERS

- A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.
- B. Steam Boilers: Measure and record entering-water temperature and flow and leaving-steam pressure, temperature, and flow.

3.13 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.
 - 4. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.14 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.15 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.

- 3. Project name.
- 4. Project location.
- 5. Architect's name and address.
- 6. Engineer's name and address.
- 7. Contractor's name and address.
- 8. Report date.
- 9. Signature of TAB supervisor who certifies the report.
- 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - Balancing stations.
 - 7. Position of balancing devices.

3.16 ADDITIONAL TESTS

- A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
- B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93
SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, concealed supply and return.
 - 12. Outdoor, exposed supply and return.
- B. Related Sections:
 - 1. Section 23 07 16 "HVAC Equipment Insulation."
 - 2. Section 23 07 19 "HVAC Piping Insulation."
 - 3. Section 23 31 13 "Metal Ducts" for duct liners.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
 - 3. Detail application of field-applied jackets.
 - 4. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having

jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

- 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 4. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.
 - 1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
 - 2. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 3. Solids Content: 60 percent by volume and 66 percent by weight.
 - 4. Color: White.

2.5 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: Aluminum.

- 5. For indoor applications, use sealants that have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Fire- and water-resistant, flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 4. Color: White.
 - 5. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factoryapplied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for ducts.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Adhesive: As recommended by jacket material manufacturer.
 - 2. Color: White.

- D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. Sheet and roll stock ready for shop or field sizing.
 - 2. Finish and thickness are indicated in field-applied jacket schedules.
 - 3. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - 4. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
- E. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 11.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Width: 3 inches.
 - 2. Thickness: 6.5 mils.
 - 3. Adhesion: 90 ounces force/inch in width.
 - 4. Elongation: 2 percent.
 - 5. Tensile Strength: 40 lbf/inch in width.
 - 6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Width: 2 inches.
 - 2. Thickness: 6 mils.
 - 3. Adhesion: 64 ounces force/inch in width.
 - 4. Elongation: 500 percent.
 - 5. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Width: 2 inches.
 - 2. Thickness: 3.7 mils.
 - 3. Adhesion: 100 ounces force/inch in width.
 - 4. Elongation: 5 percent.
 - 5. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with closed seal.
- B. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 2. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
 - b. Spindle: Nylon, 0.106-inch- diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.
 - c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 3. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - b. Spindle: Aluminum, fully annealed, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - c. Adhesive-backed base with a peel-off protective cover.
 - 4. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
 - 5. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

D. Wire: 0.080-inch nickel-copper alloy.

2.11 CORNER ANGLES

- A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface.
- B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive selfsealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.

- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 - 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- E. Insulation Installation at Floor Penetrations:
 - 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.4 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation

face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitordischarge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
 - 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FIRE-RATED INSULATION SYSTEM INSTALLATION

- A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.
- B. Insulate duct access panels and doors to achieve same fire rating as duct.
- C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 07 84 13 "Penetration Firestopping."

3.7 FINISHES

- A. Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, exposed, Type I, commercial, kitchen hood exhaust.
 - 7. Indoor, concealed oven and warewash exhaust.
 - 8. Indoor, exposed oven and warewash exhaust.
 - 9. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 10. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 11. Outdoor, concealed supply and return.
 - 12. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 3. Factory-insulated flexible ducts.
 - 4. Factory-insulated plenums and casings.
 - 5. Flexible connectors.
 - 6. Vibration-control devices.
 - 7. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, Supply-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- B. Concealed, Return-Air Duct 25' from air handler and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- C. Concealed, Outdoor-Air Duct and Plenum Insulation: Mineral-fiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.

- D. Concealed, Exhaust-Air Duct and Plenum Insulation from backdraft damper to wall/foot line: Mineralfiber blanket, 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density.
- E. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket; thickness as required to achieve 2-hour fire rating.
- F. Exposed, Supply-Air Duct and Plenum Insulation: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density. Lined duct.
- G. Exposed, Return-Air Duct and Plenum Insulation: 1-1/2 inches thick and 0.75-lb/cu. ft. nominal density. Lined duct 25' from AHU.
- H. Exposed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket; thickness as required to achieve 2-hour fire rating.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. None.
 - 2. PVC: 20 mils thick.
 - 3. Aluminum, Smooth: 0.016 inch thick.
- D. Ducts and Plenums, Exposed:
 - 1. None.
 - 2. PVC: 20 mils thick.
 - 3. Aluminum, Smooth: 0.016 inch thick.

3.12 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Ducts and Plenums, Concealed:
 - 1. None.
 - 2. PVC: 20 mils thick.
 - 3. Aluminum, Smooth: 0.040 inch thick.

END OF SECTION 23 07 13

SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Chilled-water indoors and outdoors.
 - 2. Heating hot-water piping, indoors.
- B. Related Sections:
 - 1. Section 23 07 13 "Duct Insulation."
 - 2. Section 23 21 13.13 "Underground Hydronic Piping" for loose-fill pipe insulation in underground piping outside the building.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail insulation application at pipe expansion joints for each type of insulation.
 - 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Detail removable insulation at piping specialties.
 - 6. Detail application of field-applied jackets.
 - 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- E. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Pittsburgh Corning Corporation.
 - 2. Block Insulation: ASTM C 552, Type I.
 - 3. Special-Shaped Insulation: ASTM C 552, Type III.
 - 4. Board Insulation: ASTM C 552, Type IV.
 - 5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
 - 6. Preformed Pipe Insulation with Factory-Applied ASJ: Comply with ASTM C 552, Type II, Class 2.
 - 7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA, Inc.
 - b. Armacell LLC.
 - c. K-Flex USA.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 1290, Type I.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. Knauf Insulation.
 - d. Manson Insulation Inc.
 - e. Owens Corning.
- H. Mineral-Fiber, Preformed Pipe Insulation:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. Knauf Insulation.
 - c. Manson Insulation Inc.
 - d. Owens Corning.
- 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- 3. Type II, 1200 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- I. Mineral-Fiber, Pipe Insulation Wicking System: Preformed pipe insulation complying with ASTM C 547, Type I, Grade A, with absorbent cloth factory-applied to the entire inside surface of preformed pipe insulation and extended through the longitudinal joint to outside surface of insulation under insulation jacket. Factory apply a white, polymer, vapor-retarder jacket with self-sealing adhesive tape seam and evaporation holes running continuously along the longitudinal seam, exposing the absorbent cloth.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Owens Corning.
- J. Polyolefin: Unicellular, polyethylene thermal plastic insulation. Comply with ASTM C 534 or ASTM C 1427, Type I, Grade 1 for tubular materials and Type II, Grade 1 for sheet materials.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armacell LLC.
 - b. Nomaco Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ramco Insulation, Inc.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

- a. Foster Brand; H. B. Fuller Construction Products.
- 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aeroflex USA, Inc.
 - b. Armacell LLC.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. K-Flex USA.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
 - 2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

- 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- F. PVC Jacket Adhesive: Compatible with PVC jacket.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dow Corning Corporation.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. P.I.C. Plastics, Inc.
 - d. Speedline Corporation.
 - 2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products.
 - b. Vimasco Corporation.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Knauf Insulation.
 - e. Mon-Eco Industries, Inc.
 - f. Vimasco Corporation.

- 2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: 60 percent by volume and 66 percent by weight.
- 5. Color: White.

2.5 SEALANTS

- A. Joint Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
 - e. Pittsburgh Corning Corporation.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Childers Brand; H. B. Fuller Construction Products.

- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: White.
- 6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factoryapplied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II.
 - 5. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1) ITW Insulation Systems; Illinois Tool Works, Inc.
 - 6. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perm when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1) ITW Insulation Systems; Illinois Tool Works, Inc.
 - 7. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1) ITW Insulation Systems; Illinois Tool Works, Inc.
 - 8. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

- A. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Foster Brand; H. B. Fuller Construction Products.
 - b. Vimasco Corporation.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil face, fiberglass-reinforced scrim with kraft-paper backing.
- C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. P.I.C. Plastics, Inc.
 - c. Proto Corporation.
 - d. Speedline Corporation.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- D. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. ITW Insulation Systems; Illinois Tool Works, Inc.
 - c. RPR Products, Inc.
 - 2. Sheet and roll stock ready for shop or field sizing.
 - 3. Finish and thickness are indicated in field-applied jacket schedules.
 - 4. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper.
 - 5. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - 6. Factory-Fabricated Fitting Covers:

- a. Same material, finish, and thickness as jacket.
- b. Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
- c. Tee covers.
- d. Flange and union covers.
- e. End caps.
- f. Beveled collars.
- g. Valve covers.
- h. Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- E. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with white aluminum-foil facing.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Polyguard Products, Inc.
- F. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
- G. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
- H. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.

2.9 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Knauf Insulation.
 - e. Venture Tape.

- 2. Width: 3 inches.
- 3. Thickness: 11.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Knauf Insulation.
 - e. Venture Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Compac Corporation.
 - b. Ideal Tape Co., Inc,; an American Biltrite company.
 - c. Venture Tape.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.
- D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc,; an American Biltrite company.
 - d. Knauf Insulation.
 - e. Venture Tape.
 - 2. Width: 2 inches.

- 3. Thickness: 3.7 mils.
- 4. Adhesion: 100 ounces force/inch in width.
- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.
- E. PVDC Tape for Indoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
 - 2. Width: 3 inches.
 - 3. Film Thickness: 4 mils.
 - 4. Adhesive Thickness: 1.5 mils.
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch in width.
- F. PVDC Tape for Outdoor Applications: White vapor-retarder PVDC tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
 - 2. Width: 3 inches.
 - 3. Film Thickness: 6 mils.
 - 4. Adhesive Thickness: 1.5 mils.
 - 5. Elongation at Break: 145 percent.
 - 6. Tensile Strength: 55 lbf/inch in width.

2.10 SECUREMENTS

- A. Aluminum Bands: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with closed seal.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
 - b. RPR Products, Inc.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- C. Wire: 0.062-inch soft-annealed, stainless steel.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. C & F Wire.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.3 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

- 1. Seal penetrations with flashing sealant.
- 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
- 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section "07 84 10 Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section "07 84 10 Through-Penetration Firestop Systems".

3.4 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for aboveambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When preformed sections of insulation are not available, install mitered sections of cellularglass insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of cellular-glass insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.

4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER PREFORMED PIPE INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 4. Install insulation to flanges as specified for flange insulation application.

3.8 INSTALLATION OF POLYOLEFIN INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Seal split-tube longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of polyolefin pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 - 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.9 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.
- D. Where PVDC jackets are indicated, install as follows:

- 1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
- 2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
- 3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
- 4. Jacket can be wrapped in cigarette fashion along length of roll for insulation systems with an outer circumference of 33-1/2 inches or less. The 33-1/2-inch- circumference limit allows for 2-inch- overlap seal. Using the length of roll allows for longer sections of jacket to be installed at one time. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
- 5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.10 FINISHES

- A. Pipe Insulation with ASJ or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing fieldapplied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.12 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.13 INDOOR PIPING INSULATION SCHEDULE

- A. Chilled Water above 40 Deg F: Insulation shall be one of the following:
 - 1. Cellular Glass: 1-1/2 inches thick.
 - 2. Mineral-Fiber, Preformed Pipe, Type I or Pipe Insulation Wicking System: 1-1/2 inches thick.
- B. Heating-Hot-Water Supply and Return, 200 Deg F and Below: Insulation shall be one of the following:
 - 1. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.

3.14 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Chilled Water: Insulation shall be one of the following:
 - 1. Cellular Glass: 3 inches thick.
 - 2. Mineral-Fiber, Preformed Pipe Insulation, Type I: 3 inches thick.

3.15 OUTDOOR, UNDERGROUND PIPING INSULATION SCHEDULE

- A. Loose-fill insulation, for belowground piping, is specified in Section 23 21 13.13 "Underground Hydronic Piping".
- B. Chilled Water, All Sizes: Cellular glass, 2 inches thick.

3.16 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. PVC: 20 mils thick.
 - 2. Aluminum, Smooth: 0.016 inch thick.

- D. Piping, Exposed:
 - 1. PVC: 20 mils thick.
 - 2. Aluminum, Smooth: 0.016 inch thick.

3.17 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the fieldapplied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Aluminum, Smooth: 0.040 inch thick.
- D. Piping, Exposed:
 - 1. Aluminum, Smooth: 0.040 inch thick.

3.18 UNDERGROUND, FIELD-INSTALLED INSULATION JACKET

A. For underground direct-buried piping applications, install underground direct-buried jacket over insulation material.

END OF SECTION 23 07 19
SECTION 23 08 00 - COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this section.
- B. The OPR and BOD documentation are included by reference for information only.
- C. 2012 IECC section C408.

1.2 SUMMARY

- A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.
- B. Commissioning shall meet requirements of 2012 IECC section C408.
- C. The project is NOT a LEED project.
- D. Related Sections:
 - 1. Section 01 91 13 "General Commissioning Requirements" for general commissioning process requirements.
 - 2. Section 26 08 00 "Commissioning of Lighting Systems" for commissioning process activities for automated lighting systems, assemblies, equipment, and components.

1.3 DEFINITIONS

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.4 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness, indicating systems have gone through required startup and documentation has been submitted.
- B. Certificates of completion of installation, prestart, and startup activities.

1.5 ALLOWANCES

A. Labor, instrumentation, tools, and equipment costs for technicians for the performance of commissioning testing are covered by the "Schedule of Allowances" Article in Section 01 21 00 "Allowances."

1.6 CONTRACTOR'S RESPONSIBILITIES

- A. Perform commissioning tests at the direction of the CxA.
- B. Attend construction phase controls coordination meeting.
- C. Attend testing, adjusting, and balancing review and coordination meeting.
- D. Provide independent test and balance of air and water systems.
- E. Complete equipment start up as required by manufacture documentation and those listed in the specifications.
- F. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
- G. Provide information requested by the CxA for final commissioning documentation.
- H. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.
- I. Perform opposite season testing with the CxA.
- J. Provide Training Agenda and perform owner training.
- K. Provide Operation and Maintenance Manuals and As Built drawings.

1.7 CxA'S RESPONSIBILITIES

- A. Provide Project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.
- B. Direct commissioning testing.
- C. Provide site visit Field Reports and a Deficiency Log.
- D. Verify testing, adjusting, and balancing of Work are complete.
- E. Provide a Preliminary Commissioning Report
- F. Provide review of the Training Agenda
- G. Provide test data, inspection reports, and certificates in the Commissioning Report.

1.8 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 - 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 - 4. Certificate of readiness, signed by the Contractor, certifying that HVAC&R systems, assemblies, equipment, components, and associated controls are ready for testing.
 - 5. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed. Provide copies of completed start up reports.
 - 6. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.
 - 7. Test and inspection reports and certificates.
 - 8. Corrective action documents.
 - 9. Verification of testing, adjusting, and balancing reports.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

- 3.1 TESTING PREPARATION
 - A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
 - B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
 - C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
 - D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
 - E. Inspect and verify the position of each device and interlock identified on checklists.
 - F. Check safety cutouts, alarms, and interlocks with smoke control and life-safety systems during each mode of operation.
 - G. Verify the optimization of systems such as economizer operation have been implemented.
 - H. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.2 TESTING AND BALANCING VERIFICATION

- A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.
- B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.
- C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 - 1. The CxA will notify testing and balancing subcontractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 - 2. The testing and balancing subcontractor shall use the same instruments (by model and serial number) that were used when original data were collected.
 - 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
 - 4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.3 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the HVAC&R subcontractor, testing and balancing subcontractor, and HVAC&R Instrumentation and Control subcontractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.
- E. Tests will be performed using design conditions whenever possible.
- F. Opposite season testing will be required and contractors shall be required to work with the CxA to perform these tests.
- G. Simulated conditions may need to be imposed when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.
- H. The CxA may direct that set points be altered when simulating conditions is not practical.
- I. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.

- J. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.
- K. The testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

END OF SECTION 23 08 00

SECTION 23 09 23 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. DDC system for monitoring and controlling of HVAC systems.
 - 2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.
- B. Related Requirements:
 - 1. Section 23 09 93 "Sequence of Operations for HVAC Controls" for control sequences in DDC systems.

1.2 APPROVED MANUFACTURERS:

- A. Approved manufacturer's are limited to the following:
 - 1. Trane Company of Billings, Montana
 - 2. Mechanical Technology Incorporated of Billings, Montana
 - 3. ATS Inland Northwest of Billings, Montana

1.3 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of welldefined rules or processes for solving a problem in a finite number of steps.
- B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.
- C. BACnet Specific Definitions:
 - 1. BACnet: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data over and services over a network.
 - 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
 - 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
 - 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
 - 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.

- D. Binary: Two-state signal where a high signal level represents ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.
- E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
- F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.
- G. COV: Changes of value.
- H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.
- I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.
- J. DOCSIS: Data-OverCable Service Interface Specifications.
- K. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.
- L. HLC: Heavy load conditions.
- M. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.
- N. LAN: Local area network.
- O. LON Specific Definitions:
 - 1. FTT-10: Echelon Transmitter-Free Topology Transceiver.
 - 2. LonMark: Association comprising suppliers and installers of LonTalk products. Association provides guidelines for implementing LonTalk protocol to ensure interoperability through a standard or consistent implementation.
 - 3. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication. LonTalk is a register trademark of Echelon.
 - 4. LonWorks: Network technology developed by Echelon.
 - 5. Node: Device that communicates using CEA-709.1-C protocol and that is connected to a CEA-709.1-C network.
 - 6. Node Address: The logical address of a node on the network, consisting of a Domain number, Subnet number, and Node number. "Node number" portion of an address is a number assigned to device during installation, is unique within a subnet, and is not a factory-set unique Node ID.
 - 7. Node ID: A unique 48-bit identifier assigned at factory to each CEA-709.1-C device. Sometimes called a "Neuron ID."

- 8. Program ID: An identifier (number) stored in a device (usually EEPROM) that identifies node manufacturer, functionality of device (application and sequence), transceiver used, and intended device usage.
- 9. Standard Configuration Property Type (SCPT): Pronounced "skip-it." A standard format type maintained by LonMark International for configuration properties.
- 10. Standard Network Variable Type (SNVT): Pronounced "snivet." A standard format type maintained by LonMark used to define data information transmitted and received by individual nodes. "SNVT" is used in two ways. It is an acronym for "Standard Network Variable Type" and is often used to indicate a network variable itself (i.e., it can mean "a network variable of a standard network variable type").
- 11. Subnet: Consists of a logical grouping of up to 127 nodes, where logical grouping is defined by node addressing. Each subnet is assigned a number, which is unique within a Domain. See "Node Address."
- 12. TP/FT-10: Free Topology Twisted Pair network defined by CEA-709.3 and is most common media type for a CEA-709.1-C control network.
- 13. TP/XF-1250: High-speed, 1.25-Mbps, twisted-pair, doubly terminated bus network defined by "LonMark Interoperability Guidelines" typically used only to connect multiple TP/FT-10 networks.
- 14. User-Defined Configuration Property Type (UCPT): Pronounced "U-Keep-It." A Configuration Property format type that is defined by device manufacturer.
- 15. User-Defined Network Variable Type (UNVT): Network variable format defined by device manufacturer. UNVTs create non-standard communications that other vendors' devices may not correctly interpret and may negatively impact system operation. UNVTs are not allowed.
- P. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- Q. Modbus TCP/IP: An open protocol for exchange of process data.
- R. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- S. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.
- T. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.
- U. PDA: Personal digital assistant.
- V. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- W. POT: Portable operator's terminal.
- X. RAM: Random access memory.
- Y. RF: Radio frequency.
- Z. Router: Device connecting two or more networks at network layer.
- AA. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- BB. UPS: Uninterruptible power supply.

- CC. USB: Universal Serial Bus.
- DD. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
- EE. VAV: Variable air volume.
- FF. WLED: White light emitting diode.

1.4 PREINSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at a location and time to be determined by owner

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product include the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.
 - 3. Product description with complete technical data, performance curves, and product specification sheets.
 - 4. Installation, operation and maintenance instructions including factors effecting performance.
 - 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - a. Servers.
 - b. Printers.
 - c. Gateways.
 - d. Routers.
 - e. Protocol analyzers.
 - f. DDC controllers.
 - g. Enclosures.
 - h. Electrical power devices.
 - i. Accessories.
 - j. Instruments.
 - k. Control dampers and actuators.
 - I. Control valves and actuators.
 - 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
 - 7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.
- B. Software Submittal:
 - 1. Cross-referenced listing of software to be loaded on each operator workstation, server, gatewayand DDC controller.

- 2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
- 3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
- 4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
- 5. Listing and description of each engineering equation used with reference source.
- 6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
- 7. Description of operator interface to alphanumeric and graphic programming.
- 8. Description of each network communication protocol.
- 9. Description of system database, including all data included in database, database capacity and limitations to expand database.
- 10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.
- 11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.
- C. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details where applicable.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail means of vibration isolation and show attachments to rotating equipment.
 - 4. Plan Drawings indicating the following:
 - a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 - b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 - c. Each desktop operator workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 - d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 - e. Network communication cable and raceway routing.
 - 5. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 - e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 - f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.

- g. Narrative sequence of operation.
- h. Graphic sequence of operation, showing all inputs and output logical blocks.
- 6. Control panel drawings indicating the following:
 - a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
 - b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
 - c. Unique drawing for each panel.
- 7. DDC system network riser diagram indicating the following:
 - a. Each device connected to network with unique identification for each.
 - b. Interconnection of each different network in DDC system.
 - c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or fiber-optic cable type. Indicate raceway type and size for each.
 - d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.
- 8. DDC system electrical power riser diagram indicating the following:
 - a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
 - c. Each product requiring power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
 - d. Power wiring type and size, race type, and size for each.
- 9. Monitoring and control signal diagrams indicating the following:
 - a. Control signal cable and wiring between controllers and I/O.
 - b. Point-to-point schematic wiring diagrams for each product.
 - c. Control signal tubing to sensors, switches and transmitters.
 - d. Process signal tubing to sensors, switches and transmitters.
- 10. Color graphics indicating the following:
 - a. Itemized list of color graphic displays to be provided.
 - b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
 - c. Intended operator access between related hierarchical display screens.
- D. System Description:
 - 1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
 - 2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Controller failure.
 - f. Instrument failure.
 - g. Control damper and valve actuator failure.
- 4. Complete bibliography of documentation and media to be delivered to Owner.
- 5. Description of testing plans and procedures.
- 6. Description of Owner training.
- E. Samples:
 - 1. For each exposed product, installed in finished space for approval of selection of aesthetic characteristics.
- F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.
 - 1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
 - 2. Schedule and design calculations for control dampers and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Face velocity at Project design and minimum airflow conditions.
 - c. Pressure drop across damper at Project design and minimum airflow conditions.
 - d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.
 - i. Actuator signal to control damper (on, close or modulate).
 - j. Actuator position on loss of power.
 - k. Actuator position on loss of control signal.
 - 3. Schedule and design calculations for control valves and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure-differential drop across valve at Project design flow condition.
 - c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.
 - f. Leakage flow at maximum system pressure differential.
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.
 - i. Actuator signal to control damper (on, close or modulate).
 - j. Actuator position on loss of power.
 - k. Actuator position on loss of control signal.

- 4. Schedule and design calculations for selecting flow instruments.
 - a. Instrument flow range.
 - b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - d. Pressure-differential loss across instrument at Project design flow conditions.
 - e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plan drawings, reflected ceiling plan(s), and other details, drawn to scale and coordinated with each other, using input from installers of the items involved.
- B. Product Certificates:
 - 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.
 - 2. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with LonWorks.
- 1.7 Product Test Reports: For each product that requires testing to be performed by manufacturer CLOSEOUT SUBMITTALS
 - A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to:
 - 1) Design and install new points, panels, and other hardware.
 - 2) Perform preventive maintenance and calibration.
 - 3) Debug hardware problems.
 - 4) Repair or replace hardware.

- h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
- i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
- j. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
- k. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
- I. Licenses, guarantees, and warranty documents.
- m. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
- n. Owner training materials.

1.8 QUALITY ASSURANCE

- A. DDC System Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of DDC systems and products.
 - 2. DDC systems with similar requirements to those indicated for a continuous period of 10 years within time of bid.
 - 3. DDC systems and products that have been successfully tested and in use on at least five past projects.
 - 4. Having complete published catalog literature, installation, operation and maintenance manuals for all products intended for use.
 - 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing and quality control.
 - d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
 - e. Owner operator training.
- B. DDC System Provider Qualifications:
 - 1. Authorized representative of, and trained by, DDC system manufacturer.
 - 2. In-place facility located within 120 miles of Project.
 - 3. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
 - 4. Demonstrated past experience on five projects of similar complexity, scope and value.
 - 5. Each person assigned to Project shall have demonstrated past experience.
 - 6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 - 7. Service and maintenance staff assigned to support Project during warranty period.
 - 8. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
 - 9. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

1.9 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
 - 2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 - a. Install updates only after receiving Owner's written authorization.
 - 3. Warranty service shall occur during normal business hours and commence within 48 hours of Owner's warranty service request.
 - 4. Warranty Period: One year(s) from date of Substantial Completion for labor and Three years on parts.

PART 2 - PRODUCTS

2.1 DDC SYSTEM DESCRIPTION

- A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.
 - 1. DDC system shall consist of a high speed peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 DISTRICT DDC SYSTEM ACCESS

- A. DDC system shall be accessible by the district via their dedicated IP address.
 - 1. Access to DDC System:
 - a. Operator workstation shall perform overall system supervision and configuration, graphical user interface, management report generation, and alarm annunciation.
 - b. DDC system shall support district access to building data via an IP address given to the contractor.
 - c. Access shall be password protected for district established levels of use. Coordinate with district for specifics.

2.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.
 - 1. System Performance Objectives:

- a. DDC system shall manage HVAC systems.
- b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
- c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
- d. DDC system shall operate while unattended by an operator and through operator interaction.
- e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.
- B. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:
 - 1. Current:
 - a. Milliamperes: Nearest 1/100th of a milliampere.
 - b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.
 - 2. Flow:
 - a. Air: Nearest 1/10th of a cfm through 100 cfm; nearest cfm between 100 and 1000 cfm; nearest 10 cfm between 1000 and 10,000 cfm; nearest 100 cfm above 10,000 cfm.
 - b. Water: Nearest 1/10th gpm through 100 gpm; nearest gpm between 100 and 1000 gpm; nearest 10 gpm between 1000 and 10,000 gpm; nearest 100 gpm above 10,000 gpm.
 - 3. Gas:
 - a. Carbon Dioxide (ppm): Nearest ppm.
 - 4. Moisture (Relative Humidity):
 - a. Relative Humidity (Percentage): Nearest 1 percent.
 - 5. Position, Dampers and Valves (Percentage Open): Nearest 1 percent.
 - 6. Pressure:
 - a. Air, Ducts and Equipment: Nearest 1/10th in. w.c..
 - b. Space: Nearest 1/100th in. w.c. .
 - c. Water: Nearest 1/10 psig through 100 psig, nearest psig above 100 psig.
 - 7. Temperature:
 - a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 - b. Outdoor: Nearest degree.
 - c. Space: Nearest 1/10th of a degree.
 - d. Chilled Water: Nearest 1/10th of a degree.
 - e. Condenser Water: Nearest 1/10th of a degree.
 - f. Heating Hot Water: Nearest degree.
 - 8. Voltage: Nearest 1/10 volt up to 100 V; nearest volt above 100 V.
- C. Environmental Conditions for Controllers, Gateways, and Routers:

- 1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
 - a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.
- 2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 - a. Outdoors, Protected: Type 3
 - b. Indoors, Heated with Filtered Ventilation: Type 1.
 - c. Indoors, Heated with Non-Filtered Ventilation: Type 1.
 - d. Indoors, Heated and Air Conditioned: Type 1.

2.4 SYSTEM ARCHITECTURE

- A. System architecture shall consist of no more than two levels of LANs.
 - 1. Level one LAN shall connect network controllers and operator workstations.
- B. Minimum Data Transfer and Communication Speed:
 - 1. LAN Connecting Operator Workstations and Network Controllers:100 Mbps.
- C. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.
- D. System architecture shall perform modifications without having to remove and replace existing network equipment.
- E. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.

2.5 DDC SYSTEM OPERATOR INTERFACES

- A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:
 - 1. Desktop and portable operator workstation with hardwired connection through LAN port.
 - 2. Portable operator terminal with hardwired connection through LAN port.
 - 3. Portable operator workstation with wireless connection through LAN router.
- B. Desktop Workstations:
 - 1. Connect to DDC system Level one LAN through a communications port directly on LAN or through a communications port on a DDC controller.
 - 2. Able to communicate with any device located on any DDC system LAN.

- 3. Able to communicate, with modems, remotely with any device connected to any DDC system LAN.
- 4. Communication via a modem shall not interfere with LAN activity and LAN activity shall not prevent workstation from handling incoming calls.
- C. Critical Alarm Reporting:
 - 1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
 - 2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
 - 3. DDC system shall notify recipients by any or all means, including e-mail, text message, and prerecorded phone message to mobile and landline phone numbers.

2.6 NETWORK COMMUNICATION PROTCOL

- A. Network communication protocol(s) used throughout entire DDC system shall be open to public and available to other companies for use in making future modifications to DDC system.
- B. ASHRAE 135 Protocol:
 - 1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
 - 2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
 - 3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
 - 4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.
- C. CEA-709.1-C Protocol:
 - 1. DDC system shall be an open implementation of LonWorks technology using CEA 709.1-C communication protocol and using LonMark SNVTs as defined in LonMark SNVT list exclusively for communication throughout DDC system.
 - 2. LNS shall be used for all network management including addressing and binding of network variables.
 - a. Final LNS database shall be submitted with Project closeout submittals.
 - b. All devices shall be online and commissioned into LNS database.
 - 3. All devices connected to DDC system network(s) shall use CEA-709.1-C protocol and be installed so SCPT output from any node on network can be bound to any other node in the domain.
- D. Industry Standard Protocols:
 - 1. DDC system shall use any one or a combination of the following industry standard protocols for network communication while complying with other DDC system requirements indicated:
 - a. ASHRAE 135.
 - b. CEA-709.1-C.
 - c. Modbus Application Protocol Specification V1.1b.

- 2. Operator workstations and network controllers shall communicate through ASHRAE 135 or CEA-709.1-C protocol.
- 3. Portions of DDC system networks using ASHRAE 135 communication protocol shall be an open implementation of network devices complying with ASHRAE 135. Network devices shall be tested and listed by BACnet Testing Laboratories.
- 4. Portions of DDC system networks using CEA-709.1-C communication protocol shall be an open implementation of LonWorks technology using CEA-709.1-C communication protocol and using LonMark SNVTs as defined in LonMark SNVT list exclusively for DDC system.
- 5. Portions of DDC system networks using Modbus Application Protocol Specification V1.1b communication protocol shall be an open implementation of network devices and technology complying with Modbus Application Protocol Specification V1.1b.
- 6. Gateways shall be used to connect networks and network devices using different protocols.

2.7 DESKTOP OPERATOR WORKSTATIONS

- A. Performance Requirements:
 - 1. Desktop Operator Workstation to be provided by the owner. Necessary software for the DDC system to be installed by TC contractor.
 - 2. Performance requirements may dictate equipment exceeding minimum requirements indicated.
 - 3. Energy Star compliant.

2.8 SYSTEM SOFTWARE

- A. System Software Minimum Requirements:
 - 1. Real-time multitasking and multiuser 64 bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.
 - 2. Operating system shall be capable of operating DOS and Microsoft Windows applications.
 - 3. Database management software shall manage all data on an integrated and non-redundant basis. Additions and deletions to database shall be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.
 - 4. Network communications software shall manage and control multiple-network communications to provide exchange of global information and execution of global programs.
 - 5. Operator interface software shall include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.
 - 6. Scheduling software shall schedule centrally based time and event, temporary, and exception day programs.
- B. Operator Interface Software:
 - 1. Minimize operator training through use of English language prorating and English language point identification.
 - 2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.
 - 3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.
 - 4. Automatic sign-off period shall be programmable from one to 60 minutes in one-minute increments on a per operator basis.
 - 5. Operator sign-on and sign-off activity shall be recorded and sent to printer.

6. Security Access:

- a. Operator access to DDC system shall be under password control.
- b. An alphanumeric password shall be field assignable to each operator.
- c. Operators shall be able to access DDC system by entry of proper password.
- d. Operator password shall be same regardless of which computer or other interface means is used.
- e. Additions or changes made to passwords shall be updated automatically.
- f. Each operator shall be assigned an access level to restrict access to data and functions the operator is cable of performing.
- g. Software shall have at least five access levels.
- h. Each menu item shall be assigned an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.
- i. Display menu items to operator with those capable of access highlighted. Menu and operator access level assignments shall be online programmable and under password control.
- 7. Operators shall be able to perform commands including, but not limited to, the following:
 - a. Start or stop selected equipment.
 - b. Adjust set points.
 - c. Add, modify, and delete time programming.
 - d. Enable and disable process execution.
 - e. Lock and unlock alarm reporting for each point.
 - f. Enable and disable totalization for each point.
 - g. Enable and disable trending for each point.
 - h. Override control loop set points.
 - i. Enter temporary override schedules.
 - j. Define holiday schedules.
 - k. Change time and date.
 - I. Enter and modify analog alarm limits.
 - m. Enter and modify analog warning limits.
 - n. View limits.
 - o. Enable and disable demand limiting.
 - p. Enable and disable duty cycle.
 - q. Display logic programming for each control sequence.
- 8. Reporting:
 - a. Generated automatically and manually.
 - b. Sent to displays
 - c. Types of Reporting:
 - 1) General listing of points.
 - 2) List points currently in alarm.
 - 3) List of off-line points.
 - 4) List points currently in override status.
 - 5) List of disabled points.
 - 6) List points currently locked out.
 - 7) List of items defined in a "Follow-Up" file.
 - 8) List weekly schedules.
 - 9) List holiday programming.
 - 10) List of limits and deadbands.

- 9. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.
- C. Graphic Interface Software:
 - 1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.
 - 2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.
 - 3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.
 - 4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.
 - 5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.
 - 6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.
 - 7. Graphics are to be online programmable and under password control.
 - 8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.
 - 9. Graphics shall also contain software points.
 - 10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.
 - 11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.
 - 12. Display operator accessed data on the monitor.
 - 13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.
 - 14. Include operator with means to directly access graphics without going through penetration path.
 - 15. Dynamic data shall be assignable to graphics.
 - 16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.
 - 17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.
 - 18. Points shall be dynamic with operator adjustable update rates on a per point basis
 - 19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.
 - a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.
 - b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.
 - c. Keyboard equivalent shall be available for those operators with that preference.
 - 20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve

plot and other information on other quadrants on screen. This feature shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.

- D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:
 - 1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.
 - 2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
 - a. Room layouts with room identification and name.
 - b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
 - c. Location and identification of each hardware point being controlled or monitored by DDC system.
 - 3. Control schematic for each of following, including a graphic system schematic representation with point identification, set point and dynamic value indication
 - a. Chilled-water system.
 - b. Energy-recovery unit
 - c. Heating hot-water system.
 - d. Air-handling units [
 - e. Heating and ventilation units
 - f. Exhaust Fans.
 - g. Pumps.
 - h. Terminal units VAV, Fintube, Unit Heaters, Radiant Floors
 - i. Snowmelt System
 - j. Computer Room Temperatures (monitor only)
 - k. Make-up air unit (monitor only)
 - 4. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.
 - 5. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers
- E. Alarm Handling Software:
 - 1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers
 - 2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.
 - 3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.
 - 4. Alarms display shall include the following:
 - a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
 - b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
 - c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
 - d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.

- 5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.
- 6. Send e-mail alarm messages to designated operators.
- 7. Send e-mail, page, text and voice messages to designated operators for critical alarms.
- 8. Alarms shall be categorized and processed by class.
 - a. Class 1:
 - 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 - 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 - 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.
 - b. Class 2:
 - 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 - 2) Acknowledgement may be through a multiple alarm acknowledgment.
 - c. Class 3:
 - 1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
 - 2) Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
 - 3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
 - 4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.
 - d. Class 4:
 - 1) Routine maintenance or other types of warning alarms.
 - 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.
- 9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.
- F. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.
 - 1. All I/O: With current status and values.
 - 2. Alarm: All current alarms, except those in alarm lockout.
 - 3. Disabled I/O: All I/O points that are disabled.
 - 4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
 - 5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
 - 6. Logs:
 - a. Alarm history.
 - b. System messages.

- c. System events.
- d. Trends.
- G. Standard Trends:
 - 1. Trend all I/O point present values, set points, and other parameters indicated for trending.
 - 2. Trends shall be associated into groups, and a trend report shall be set up for each group.
 - 3. Trends shall be stored within DDC controller and uploaded to hard drives automatically on reaching of DDC controller buffer limit, or by operator request, or by archiving time schedule.
 - 4. Preset trend intervals for each I/O point after review with Owner.
 - 5. Trend intervals shall be operator selectable from 10 seconds up to 60 minutes. Minimum number of consecutive trend values stored at one time shall be 100 per variable.
 - 6. When drive storage memory is full, most recent data shall overwrite oldest data.
 - 7. Archived and real-time trend data shall be available for viewing numerically and graphically by operators.
- H. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.
 - 1. Each trend shall include interval, start time, and stop time.
 - 2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on workstation hard drives.
 - 3. Data shall be retrievable for use in spreadsheets and standard database programs.
- I. Programming Software:
 - 1. Include programming software to execute sequences of operation indicated.
 - 2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
 - 3. Programing software shall be as follows:
 - a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 - 1) Function blocks shall be assembled with interconnection lines that represent to control sequence in a flowchart.
 - b. Menu Based: Programming shall be done by entering parameters, definitions, conditions, requirements and constraints.
 - 4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.
 - 5.

2.9 ASHRAE 135 GATEWAYS

- A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled plant equipment includes, but is not limited to, boilers, chillers, and variable-speed drives.
- B. Include gateways to connect BACnet to legacy systems, existing non-BACnet devices, and existing non-BACnet DDC-controlled equipment, only when specifically requested and approved by Owner.

- C. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.
- D. Gateway Minimum Requirements:
 - 1. Read and view all readable object properties on non-BACnet network to BACnet network and vice versa where applicable.
 - 2. Write to all writeable object properties on non-BACnet network from BACnet network and vice versa where applicable.
 - 3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet and vice versa.
 - 4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs according to ASHRAE 135.
 - 5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
 - 6. Backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.

2.10 CEA-709.1-C NETWORK HARDWARE

- A. Routers:
 - 1. Network routers, including routers configured as repeaters, shall comply with requirements of CEA-709.1-C and include connection between two or more CEA-709.3 TP/FT-10 channels or between two or more CEA-709.3 TP/FT-10 channels and a TP/XF-1250 channel.
 - 2. IP Routers:
 - a. Perform layer three routing of CEA-709.1-C packets over an IP network according to CEA-852-B.
 - b. Include appropriate connection to the IP network and connections to CEA-709.3 TP/FT-10 or TP/XF-1250 network.
 - c. Support the Dynamic Host Configuration Protocol for IP configuration and use of an CEA-852-B Configuration Server (for CEA-852-B configuration), but shall not rely on these services for configuration.
 - d. Capable of manual configuration via a console RS-232 port.
- B. Gateways:
 - 1. Perform bidirectional protocol translation from one non-CEA-709.1-C protocol to CEA-709.1-C.
 - 2. Incorporate a network connection to a TP/FT-10 network according to CEA-709.3 and a connection for a non-CEA-709.1-C network.

2.11 DDC CONTROLLERS

- A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.
- B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.

- C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.
- D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.
- E. Environment Requirements:
 - 1. Controller hardware shall be suitable for the anticipated ambient conditions.
 - 2. Controllers located in conditioned space shall be rated for operation at 32 to 120 deg F
 - 3. Controllers located outdoors shall be rated for operation at 40 to 150 deg F
- F. Power and Noise Immunity:
 - 1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
 - 2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.

2.12 NETWORK CONTROLLERS

- A. General Network Controller Requirements:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. System shall consist of one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
 - 3. Controller shall have enough memory to support its operating system, database, and programming requirements.
 - 4. Data shall be shared between networked controllers and other network devices.
 - 5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 6. Controllers that perform scheduling shall have a real-time clock.
 - 7. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
 - 8. Controllers shall be fully programmable.
- B. Communication:
 - 1. Network supervisory controllers shall communicate via BACnet IP.
 - 2. Network controllers shall communicate with other devices on DDC system network.
 - 3. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.
- C. Operator Interface:
 - 1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation
- D. Serviceability:

- 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
- 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.13 PROGRAMMABLE APPLICATION CONTROLLERS

- A. General Programmable Application Controller Requirements:
 - 1. Include adequate number of controllers to achieve performance indicated.
 - 2. Controller shall have enough memory to support its operating system, database, and programming requirements.
 - 3. Data shall be shared between networked controllers and other network devices.
 - 4. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 5. Controllers that perform scheduling shall have a real-time clock.
 - 6. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
 - 7. Controllers shall be fully programmable.
- B. Communication:
 - 1. Programmable application controllers shall communicate with other devices on network.
- C. Operator Interface:
 - 1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation.
- D. Serviceability:
 - 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.14 APPLICATION-SPECIFIC CONTROLLERS

- A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.
 - 1. Capable of standalone operation and shall continue to include control functions without being connected to network.
 - 2. Data shall be shared between networked controllers and other network devices.

- B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.
- C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation.
- D. Serviceability:
 - 1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
 - 2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.

2.15 CONTROLLER SOFTWARE

- A. General Controller Software Requirements:
 - 1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.
 - 2. I/O points shall be identified by up to 30 character point name and up to 16 character point descriptor. Same names shall be used at operator workstations.
 - 3. Control functions shall be executed within controllers using DDC algorithms.
 - 4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.
- B. Security:
 - 1. Operator access shall be secured using individual security passwords and user names.
 - 2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
 - 3. Operator log-on and log-off attempts shall be recorded.
 - 4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.
- C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:
 - 1. Weekly Schedule:
 - a. Include separate schedules for each day of week.
 - b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 - c. Each schedule may consist of up to 10 events.
 - d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.
 - 2. Exception Schedules:
 - a. Include ability for operator to designate any day of the year as an exception schedule.

- b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.
- 3. Holiday Schedules:
 - a. Include capability for operator to define up to 99 special or holiday schedules.
 - b. Schedules may be placed on scheduling calendar and will be repeated each year.
 - c. Operator shall be able to define length of each holiday period.
- D. System Coordination:
 - 1. Include standard application for proper coordination of equipment.
 - 2. Application shall include operator with a method of grouping together equipment based on function and location.
 - 3. Group may then be used for scheduling and other applications.
- E. Binary Alarms:
 - 1. Each binary point shall be set to alarm based on operator-specified state.
 - 2. Include capability to automatically and manually disable alarming.
- F. Analog Alarms:
 - 1. Each analog object shall have both high and low alarm limits.
 - 2. Alarming shall be able to be automatically and manually disabled.
- G. Alarm Reporting:
 - 1. Operator shall be able to determine action to be taken in event of an alarm.
 - 2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
 - 3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.
- H. Remote Communication:
 - 1. System shall have ability to dial out in the event of an alarm.
- I. Maintenance Management: System shall monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.
- J. Sequencing: Include application software based on sequences of operation indicated to properly sequence chillers, boilers, and other applicable HVAC equipment.
- K. Control Loops:
 - 1. Support any of the following control loops, as applicable to control required:
 - a. Two-position (on/off, open/close, slow/fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control.

- 1) Include PID algorithms with direct or reverse action and anti-windup.
- 2) Algorithm shall calculate a time-varying analog value used to position an output or stage a series of outputs.
- 3) Controlled variable, set point, and PID gains shall be operator-selectable.
- e. Adaptive (automatic tuning).
- L. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.
- M. Anti-Short Cycling:
 - 1. BO points shall be protected from short cycling.
 - 2. Feature shall allow minimum on-time and off-time to be selected.
- N. On and Off Control with Differential:
 - 1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.
 - 2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.

2.16 ENCLOSURES

- A. General Enclosure Requirements:
 - 1. House each controller and associated control accessories in a single enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
 - 2. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
 - 3. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
 - 4. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door.

2.17 RELAYS

- A. General-Purpose Relays:
 - 1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.
 - 2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.
 - 3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 - 6. Relays shall have LED indication and a manual reset and push-to-test button.
 - 7. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 15 ms or less.

- d. Dropout Time: 10 ms or less.
- e. Pull-in Voltage: 85 percent of rated voltage.
- f. Dropout Voltage: 50 percent of nominal rated voltage.
- g. Power Consumption: 2 VA.
- h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
- 8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
- 9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
- 10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- B. Multifunction Time-Delay Relays:
 - 1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.
 - 2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.
 - 3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a dust-tight cover.
 - 6. Include knob and dial scale for setting delay time.
 - 7. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
 - d. Repeatability: Within 2 percent.
 - e. Recycle Time: 45 ms.
 - f. Minimum Pulse Width Control: 50 ms.
 - g. Power Consumption: 5 VA or less at 120-V ac.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
 - 8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
 - 9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
 - 10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- C. Latching Relays:
 - 1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
 - 2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
 - 3. Use a plug-in-style relay with a multibladed plug.
 - 4. Construct the contacts of either silver cadmium oxide or gold.
 - 5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
 - 6. Performance:
 - a. Mechanical Life: At least 10 million cycles.
 - b. Electrical Life: At least 100,000 cycles at rated load.
 - c. Pickup Time: 15 ms or less.
 - d. Dropout Time: 10 ms or less.
 - e. Pull-in Voltage: 85 percent of rated voltage.
 - f. Dropout Voltage: 50 percent of nominal rated voltage.
 - g. Power Consumption: 2 VA.
 - h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

- 7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
- 8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
- 9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.
- D. Current Sensing Relay:
 - 1. Monitors ac current.
 - 2. Independent adjustable controls for pickup and dropout current.
 - 3. Energized when supply voltage is present and current is above pickup setting.
 - 4. De-energizes when monitored current is below dropout current.
 - 5. Dropout current is adjustable from 50 to 95 percent of pickup current.
 - 6. Include a current transformer, if required for application.
 - 7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.
- E. Combination On-Off Status Sensor and On-Off Relay:
 - 1. Description:
 - a. On-off control and status indication in a single device.
 - b. LED status indication of activated relay and current trigger.
 - c. Closed-Open-Auto override switch located on the load side of the relay.
 - 2. Performance:
 - a. Ambient Temperature: Minus 30 to 140 deg F.
 - b. Voltage Rating: Single-phase loads rated for 300-V ac. Three-phase loads rated for 600-V ac.
 - 3. Status Indication:
 - a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 - b. Current Sensor Range: As required by application.
 - c. Current Set Point: Fixed or adjustable as required by application.
 - d. Current Sensor Output:
 - 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 - 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 - 3) Analog, zero- to 5- or 10-V dc.
 - 4) Analog, 4 to 20 mA, loop powered.
 - 4. Relay: Single-pole double-throw, continuous-duty coil; rated for 10-million mechanical cycles.
 - Enclosure: NEMA 250, Type 1 enclosure.

2.18 ELECTRICAL POWER DEVICES

A. Transformers:

5.

- 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
- 2. Transformer shall have both primary and secondary fuses.

2.19 CONTROL WIRE AND CABLE

- A. Wire: Single conductor control wiring above 24 V.
 - 1. Wire size shall be at least No. 14 AWG.
 - 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 - 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
 - 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
 - 5. Furnish wire on spools.
- B. Single Twisted Shielded Instrumentation Cable above 24 V:
 - 1. Wire size shall be a minimum No. 18AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
 - 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 - 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 - 1. Wire size shall be a minimum No. 18 AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 - 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 - 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 - 1. Cable shall be plenum rated.
 - 2. Cable shall comply with NFPA 70.

2.20 RACEWAYS FOR CONTROL WIRING, CABLING, AND TUBING

- A. Metal Conduits, Tubing, and Fittings:
 - 1. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- 2. GRC: Comply with NEMA ANSI C80.1 and UL 6.
- 3. ARC: Comply with NEMA ANSI C80.5 and UL 6A.
- 4. IMC: Comply with NEMA ANSI C80.6 and UL 1242.
- 5. PVC-Coated Steel Conduit: PVC-coated
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
- 6. EMT: Comply with NEMA ANSI C80.3 and UL 797.
- 7. FMC: Comply with UL 1;
- 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- 9. Fittings for Metal Conduit: Comply with NEMA ANSI FB 1 and UL 514B.
 - a. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - b. Fittings for EMT:
 - 1) Material: Steel.
 - 2) Type: Setscrew or compression.
 - c. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - d. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- 10. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
- B. Metal Wireways and Auxiliary Gutters:
 - 1. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - a. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
 - 3. Finish: Manufacturer's standard enamel finish.
- C. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. [Manufacturer's standard enamel finish in color as selected by Architect] [Prime coated, ready for field painting].

2.21 CONTROL POWER WIRING AND RACEWAYS

- A. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" electrical power conductors and cables.
- B. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

2.22 ACCESSORIES

- A. Damper Blade Limit Switches:
 - 1. Sense positive open and/or closed position of the damper blades.
 - 2. NEMA 250, Type 13, oil-tight construction.
 - 3. Arrange for the mounting application.
 - 4. Additional waterproof enclosure when required by its environment.
 - 5. Arrange to prevent "over-center" operation.
- B. Manual Valves:
 - 1. Needle Type:
 - a. PTFE packing.
 - b. Construct of brass for use with copper and polyethylene tubing and of stainless steel for use with stainless-steel tubing.
 - c. Aluminum T-bar handle.
 - d. Include tubing connections.
 - 2. Ball Type:
 - a. Body: Bronze ASTM B 62 or ASTM B 61.
 - b. Ball: Type 316 stainless steel.
 - c. Stem: Type 316 stainless steel.
 - d. Seats: Reinforced PTFE.
 - e. Packing Ring: Reinforced PTFE.
 - f. Lever: Stainless steel with a vinyl grip.
 - g. 600 WOG.
 - h. Threaded end connections.

2.23 IDENTIFICATION

- A. Control Equipment, Instruments, and Control Devices:
 - 1. Engraved tag bearing unique identification.
 - a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.
 - 2. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.

B. Valve Tags:

- 1. Brass tags and brass chains attached to valve.
- 2. Include tag with unique valve identification indicating control influence such as flow, level, pressure, or temperature; followed by location of valve, and followed by three-digit sequential number. For example: TV-1.001.
- 3. Valves with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.
C. Raceway and Boxes:

- 1. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- 2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.
- 3. For raceways housing pneumatic tubing, add a phenolic tag labeled "HVAC Instrument Air Tubing."
- 4. For raceways housing air signal tubing, add a phenolic tag labeled "HVAC Air Signal Tubing."
- D. Equipment Warning Labels:
 - 1. Acrylic label with pressure-sensitive adhesive back and peel-off protective jacket.
 - 2. Lettering size shall be at least 14-point type with white lettering on red background.
 - 3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
 - 4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch

2.24 VARIABLE FREQUENCY DRIVES

- A. The Temperature Control Contractor shall furnish all variable speed drives required. Electrical Contractor will install and provide all load side wiring. Temperature Control Contractor shall furnish and install all control wiring.
- B. PERFORMANCE CAPABILITIES
 - 1. The Invertor voltage/frequency ratio shall be selectable for reduced torque loads.
 - 2. The Invertor acceleration/deceleration time shall be adjustable from 1 to 120 seconds.
 - 3. The Invertor frequency setting signal choices shall include 0-5 VDC, 0-10 VDC, 4-20 mA.
 - 4. The Invertor shall have a minimum the following protective features with an alarm display indication:
 - a. Overcurrent Shut-Off
 - b. Regenerative Overvoltage
 - c. Electronic Thermal Protector
 - d. Heatsink Overheat
 - e. Instantaneous Power Failure
 - f. Ground Fault
 - 5. The following operator controls shall be provided as a minimum:
 - a. Hand/Off/Auto Switch
 - b. Local/Remote Switch
 - c. Frequency Setting Speed Pot
 - d. Frequency Indication Meter Calibrated in % Speed
 - e. Amp Meter
 - f. Elapsed Time Meter
 - g. Power On Light
 - h. VFD Enable Light
 - i. VFD Fault Light
- C. ADDITIONAL OPTIONS REQUIRED

- 1. INPUT DISCONNECT: The Invertor shall be supplied with a door interlocked input disconnect motor circuit protector. The MCP shall allow trip adjustment sufficient to start the motor across the line in the bypass mode and normally be set at a minimum setting for maximum protection in the VFD mode.
- 2. BYPASS OPTION: The Invertor shall be supplied with a manual bypass contractor arrangement for transfer to the utility line to operate at constant speed. This option shall be prewired in the same enclosure, including contactors, motor overload VFD/Bypass selector switch and Bypass ON light.
- 3. AUTO RESTART: The Invertor shall initiate an automatic time delayed restart after recovering from undervoltage or loss of power. The Invertor shall not automatically restart after overcurrent, overvoltage, overtemperature, or any other damaging conditions but shall require a manual restart.
- 4. FREQUENCY JUMP: The drive shall be supplied with the capability of being field retrofitted with a frequency jump control to avoid operating at a point of resonance with the natural frequency of the machine.
- 5. RADIO INTERFERENCE FILTER: The drive shall be supplied with the capability of being field retrofitted with a radio interference filter to reduce radio interference noise.
- 6. LINE REACTORS: Variable frequency drives shall be equipped with input line reactors packaged with the drive. The line reactors shall be 3% impedance reactors manufactured to meet MIL-I-45208 and VDE-0550 standards and shall be UL recognized and CSA certified. Drives using DC bus filters in lieu of line reactors are not acceptable

D. MANUFACTURER QUALIFICATIONS

- 1. The drive manufacturer shall have a minimum of 5 years experience in producing Adjustable Frequency Motor Drives of the horsepower and voltage range required.
- 2. The drive supplier shall have a local authorized service center with spare parts stock. The Service Center shall be able to demonstrate capability of assuring quality service and repair with quick turn around based on local parts stock and technical expertise.
- 3. The Supplier of the VFD equipment shall be an authorized local dealer or representative of the manufacturer located within 500 miles of the job.
- 4. Approved Manufacturer are:
 - a. ABB
 - b. Danfoss.

E. INSTALLATION

- 1. Field start-up service shall be provided by an authorized factory service representative. The supplier shall provide warranty and authorized factory service including field start-up and training. A written certificate of the same shall be provided at start-up. Start-up by sales representative is not acceptable.
- F. Successful vendor shall supply two bound sets of Operation and Maintenance Manuals. Data shall include installation, operation, maintenance, instructions and wiring

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

- 1. Verify compatibility with and suitability of substrates.
- B. Examine roughing-in for products to verify actual locations of connections before installation.
 - 1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 - 2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

- A. Communication Interface to Equipment with Integral Controls:
 - 1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.
 - 2. Equipment to Be Connected:
 - a. Air-terminal units for the Computer Room Units; Temperature monitor only.
 - b. Make-up Air Unit specified in Section 23 74 23 "Packaged direct-fired indoor heating only make-up air unit"
 - c. Boilers specified in Section 23 52 16 "Condensing Boilers."
 - d. Automatic glycol feeder equipment
 - e. Chillers specified in Section 23 64 23 "Screw Water Chillers."

3.3 CONTROL DEVICES FOR INSTALLATION BY INSTALLERS

- A. Deliver selected control devices, specified in indicated HVAC instrumentation and control device Sections, to identified equipment and systems manufacturers for factory installation and to identified installers for field installation.
- B. Deliver the following to duct fabricator and Installer for installation in ductwork. Include installation instructions to Installer and supervise installation for compliance with requirements.
 - 1. DDC control dampers, which are specified in Section 23 09 23.12 "DDC Control Dampers."
 - 2. Airflow sensors and switches, which are specified in Section 23 09 23.14 "Flow Instruments."
 - 3. Pressure sensors, which are specified in Section 23 09 23.23 "Pressure Instruments."
- C. Deliver the following to plumbing and HVAC piping installers for installation in piping. Include installation instructions to Installer and supervise installation for compliance with requirements.
 - 1. DDC control valves, which are specified in Section 23 09 23.11 "Control Valves."
 - 2. Pipe-mounted flow meters, which are specified in Section 23 09 23.14 "Flow Instruments."
 - 3. Pipe-mounted sensors, switches and transmitters. Flow meters are specified in Section 23 09 23.14 "Flow Instruments." Liquidtemperature sensors, switches, and transmitters are specified in Section 23 09 23.27 "Temperature Instruments."

- 4. Tank-mounted sensors, switches and transmitters. Pressure sensors, switches, and transmitters are specified in Section 23 09 23.23 "Pressure Instruments." Liquid temperature sensors, switches, and transmitters are specified in Section 23 09 23.27 "Temperature Instruments."
- 5. Pipe- and tank-mounted thermowells. Liquid thermowells are specified in Section 23 09 23.27 "Temperature Instruments."

3.4 CONTROL DEVICES FOR EQUIPMENT MANUFACTURER FACTORY INSTALLATION

- A. Air-handling unit manufacturer shall factory provide and install the following:
 - 1. Application-specific controller.
 - 2. Unit-mounted DDC control dampers and actuators, which are specified in Section 23 09 23.12 "Control Dampers."
 - 3. Unit-mounted airflow sensors, switches and transmitters, which are specified in Section 23 09 23.14 "Flow Instruments."
 - 4. Unit-mounted pressure sensors, switches and transmitters, which are specified in Section 23 09 23.23 "Pressure Instruments."
 - 5. Unit-mounted temperature sensors, switches and transmitters. Air-temperature sensors, switches, and transmitters are specified in Section 23 09 23.27 "Temperature Instruments."
 - 6. Relays.

3.5 GENERAL INSTALLATION REQUIREMENTS

- A. Install products to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. Support products, tubing, piping wiring and raceways. Brace products to prevent lateral movement and sway or a break in attachment.
- D. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.
- E. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- F. Firestop penetrations made in fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
- G. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 07 92 00 "Joint Sealants."
- H. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

I. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

3.6 OPERATOR WORKSTATION INSTALLATION

- A. Desktop Operator Workstation shall be provided and installed by owner.
- B. Color Graphics Application:
 - 1. Use system schematics indicated as starting point to create graphics.
 - 2. Develop Project-specific library of symbols for representing system equipment and products.
 - 3. Incorporate digital images of Project-completed installation into graphics where beneficial to enhance effect.
 - 4. Submit sketch of graphic layout with description of all text for each graphic for Owner's review before creating graphic using graphics software.
 - 5. Seek Owner input in graphics development once using graphics software.
 - 6. Final editing shall be done on-site with Owner's review and feedback.
 - 7. Refine graphics as necessary for Owner acceptance.
 - 8. On receiving Owner acceptance, print a hard copy for inclusion in operation and maintenance manual. Prepare a scanned copy PDF file of each graphic and include with softcopy of DDC system operation and maintenance manual.
 - 9. All graphics editing software to be provided to owner upon acceptance for owner modification and editing.

3.7 CONTROLLER INSTALLATION

- A. Install controllers in enclosures to comply with indicated requirements.
- B. Connect controllers to field power supply.
- C. Install controller with latest version of applicable software and configure to execute requirements indicated.
- D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.
- E. Installation of Network Controllers:
 - 1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 - 2. Install controllers in a protected location that is easily accessible by operators.
- F. Installation of Programmable Application Controllers:
 - 1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 - 2. Install controllers in a protected location that is easily accessible by operators.
- G. Application-Specific Controllers:

- 1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
- 2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.8 ENCLOSURES INSTALLATION

- A. Install the following items in enclosures, to comply with indicated requirements:
 - 1. Controllers.
 - 2. Electrical power devices.
 - 3. Relays.
 - 4. Accessories.
 - 5. Instruments.
 - 6. Actuators
- B. Align top of adjacent enclosures.
- C. Install floor-mounted enclosures located in mechanical equipment rooms on concrete housekeeping pads. Attach enclosure legs using steel anchors.
- D. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.9 ELECTRIC POWER CONNECTIONS

- A. Connect electrical power to DDC system products requiring electrical power connections.
- B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.
- C. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
- D. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
- E. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.10 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems" for identification products and installation.
- B. Warning Labels:
 - 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 - 2. Shall be located in highly visible location near power service entry points.

3.11 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

- A. Comply with NECA 1.
- B. Comply with TIA 568-C.1.
- C. Wiring Method: Install cables in raceways and cable trays except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for cable trays specified in Section 26 05 36 "Cable Trays for Electrical Systems."
 - 3. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- D. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- E. Field Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- F. Conduit Installation:
 - 1. Install conduit expansion joints where conduit runs exceed 200 feet, and conduit crosses building expansion joints.
 - 2. Coordinate conduit routing with other trades to avoid conflicts with ducts, pipes and equipment and service clearance.
 - 3. Maintain at least 3-inch separation where conduits run axially above or below ducts and pipes.
 - 4. Limit above-grade conduit runs to 100 feet without pull or junction box.
 - 5. Do not install raceways or electrical items on any "explosion-relief" walls, or rotating equipment.
 - 6. Do not fasten conduits onto the bottom side of a metal deck roof.
 - 7. Flexible conduit is permitted only where flexibility and vibration control is required.
 - 8. Limit flexible conduit to 3 feet long.
 - 9. Conduit shall be continuous from outlet to outlet, from outlet to enclosures, pull and junction boxes, and shall be secured to boxes in such manner that each system shall be electrically continuous throughout.
 - 10. Direct bury conduits underground or install in concrete-encased duct bank where indicated.
 - a. Use rigid, nonmetallic, Schedule 80 PVC.
 - b. Provide a burial depth according to NFPA 70, but not less than 24 inches.
 - 11. Secure threaded conduit entering an instrument enclosure, cabinet, box, and trough, with a locknut on outside and inside, such that conduit system is electrically continuous throughout. Provide a metal bushing on inside with insulated throats. Locknuts shall be the type designed to bite into the metal or, on inside of enclosure, shall have a grounding wedge lug under locknut.
 - 12. Conduit box-type connectors for conduit entering enclosures shall have an insulated throat.
 - 13. Connect conduit entering enclosures in wet locations with box-type connectors or with watertight sealing locknuts or other fittings.
 - 14. Offset conduits where entering surface-mounted equipment.
 - 15. Seal conduit runs used by sealing fittings to prevent the circulation of air for the following:
 - a. Conduit extending from interior to exterior of building.

- b. Conduit extending into pressurized duct and equipment.
- c. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
- G. Wire and Cable Installation:
 - 1. Cables serving a common system may be grouped in a common raceway. Install control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
 - Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 - a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
 - 3. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - 5. UTP Cable Installation:
 - a. Comply with TIA 568-C.2.
 - b. Do not untwist UTP cables more than 1/2 inch from the point of termination, to maintain cable geometry.
 - 6. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.
 - 7. Provide strain relief.
 - 8. Terminate wiring in a junction box.
 - a. Clamp cable over jacket in junction box.
 - b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.
 - 9. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
 - 10. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
 - 11. Keep runs short. Allow extra length for connecting to terminal boards. Do not bend flexible coaxial cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
 - 12. Ground wire shall be copper and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.
 - 13. Wire and cable shall be continuous from terminal to terminal without splices.
 - 14. Use insulated spade lugs for wire and cable connection to screw terminals.
 - 15. Use shielded cable to transmitters.
 - 16. Use shielded cable to temperature sensors.
 - 17. Perform continuity and meager testing on wire and cable after installation.
 - 18. Do not install bruised, kinked, scored, deformed, or abraded wire and cable. Remove and discard wire and cable if damaged during installation, and replace it with new cable.
 - 19. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

- 20. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- 21. Protection from Electro-Magnetic Interference (EMI): Provide installation free of (EMI). As a minimum, comply with the following requirements:
 - a. Comply with BICSI TDMM and TIA 569-C for separating unshielded cable from potential EMI sources, including electrical power lines and equipment.
 - b. Separation between open cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - c. Separation between cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
 - d. Separation between cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.
 - e. Separation between Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches.
 - f. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.12 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.
- C. Perform the following tests and inspections[with the assistance of a factory-authorized service representative]:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Testing:
 - 1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
 - 2. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and

installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.

- 3. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
- 4. Test Results: Record test results and submit copy of test results for Project record.

3.13 DDC SYSTEM I/O CHECKOUT PROCEDURES

- A. Check installed products before continuity tests, leak tests and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
- D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material and support.
- E. Control Damper Checkout:
 - 1. Verify that control dampers are installed correctly for flow direction.
 - 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
 - 3. Verify that damper frame attachment is properly secured and sealed.
 - 4. Verify that damper actuator and linkage attachment is secure.
 - 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 - 6. Verify that damper blade travel is unobstructed.
- F. Control Valve Checkout:
 - 1. Verify that control valves are installed correctly for flow direction.
 - 2. Verify that valve body attachment is properly secured and sealed.
 - 3. Verify that valve actuator and linkage attachment is secure.
 - 4. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 - 5. Verify that valve ball, disc or plug travel is unobstructed.
 - 6. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.
- G. Instrument Checkout:
 - 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
 - 2. Verify that attachment is properly secured and sealed.
 - 3. Verify that conduit connections are properly secured and sealed.
 - 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
 - 5. Inspect instrument tag against approved submittal.
 - 6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
 - 7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.

- 8. For temperature instruments:
 - a. Verify sensing element type and proper material.
 - b. Verify length and insertion.

3.14 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

- A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
- B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
- C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.
- D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.
- E. Provide diagnostic and test equipment for calibration and adjustment.
- F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
- G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
- H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
- I. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.
- J. Analog Signals:
 - 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 - 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 - 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.
- K. Digital Signals:
 - 1. Check digital signals using a jumper wire.
 - 2. Check digital signals using an ohmmeter to test for contact making or breaking.
- L. Control Dampers:
 - 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 - 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 - 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.

- 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- M. Control Valves:
 - 1. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 - 2. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed and 100 percent open at proper air pressures.
 - 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 - 4. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.
- O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- P. Switches: Calibrate switches to make or break contact at set points indicated.
- Q. Transmitters:
 - 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 - 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.15 DDC SYSTEM CONTROLLER CHECKOUT

- A. Verify power supply.
 - 1. Verify voltage, phase and hertz.
 - 2. Verify that protection from power surges is installed and functioning.
 - 3. Verify that ground fault protection is installed.
 - 4. If applicable, verify if connected to UPS unit.
 - 5. If applicable, verify if connected to a backup power source.
 - 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.
- B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.

3.16 DDC CONTROLLER I/O CONTOL LOOP CHECKOUT TESTS

- A. Testing:
 - Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
 - 2. Test every I/O point throughout its full operating range.
 - 3. Test every control loop to verify operation is stable and accurate.

- 4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
- 5. Test and adjust every control loop for proper operation according to sequence of operation.
- 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
- 7. Operate each analog point at the following:
 - a. Upper quarter of range.
 - b. Lower quarter of range.
 - c. At midpoint of range.
- 8. Exercise each binary point.
- 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
- B. Validation Test:
 - 1. Verify operating performance of each I/O point in DDC system.
 - a. Verify analog I/O points at operating value.
 - b. Make adjustments to out-of-tolerance I/O points.
 - 1) Identify I/O points for future reference.
 - 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 - 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.
 - 2. Simulate conditions to demonstrate proper sequence of control.
 - 3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
 - 4. After 24 Hours following Initial Validation Test:
 - a. Re-check I/O points that required corrections during initial test.
 - b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.
 - 5. After 24 Hours of Second Validation Test:
 - a. Re-check I/O points that required corrections during second test.
 - b. Continue validation testing until I/O point is normal on two consecutive tests.
 - 6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.
 - 7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

3.17 FINAL REVIEW

A. Submit written request to General Contractor when DDC system is ready for final review. Written request shall state the following:

- 1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
- 2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
- 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
- 4. DDC system is complete and ready for final review.
- B. Review by Engineer shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.
- C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.
- D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.
- E. Prepare and submit closeout submittals when no deficiencies are reported.
- F. A part of DDC system final review shall include a demonstration to parties participating in final review.
 - 1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
 - 2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.

3.18 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions..

3.19 DEMONSTRATION

- A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.
- B. Extent of Training:
 - 1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
 - 2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
 - 3. Minimum Training Requirements:
 - a. Provide not less than 4 days of training total.
 - b. Stagger training over multiple training classes to accommodate Owner's requirements.
 - c. Provide two (2) training sessions at substantial project completion at 8 hours per session

- d. Provide one (1) eight-hour training session at 6 months after substantial completion.
- e. Provide one (1) final eight-hour training session before the end of the warranty period.
- f. Total days of training shall be broken into not more than 3 separate training classes.
- C. Training Schedule:
 - 1. Schedule training with Owner 20 business days before expected Substantial Completion.
 - 2. Schedule training to provide Owner with at least 10 business days of notice in advance of training.
 - 3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions. Each morning session and afternoon session shall be split in half with 15 minute break between sessions. Morning and afternoon sessions shall be separated by 30 minute lunch period. Training, including breaks and excluding lunch period, shall not exceed eight hours per day.
 - 4. Provide staggered training schedule as requested by Owner.
- D. Training Attendee List and Sign-in Sheet:
 - 1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
 - 2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
 - 3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
 - 4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
 - 5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.
- E. Attendee Training Manuals:
 - 1. Provide each attendee with a color hard copy of all training materials and visual presentations.
 - 2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.
 - 3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

END OF SECTION 23 09 23

SECTION 23 09 23.11 - CONTROL VALVES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes control valves and actuators for DDC systems.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control System for HVAC" control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.11.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include diagrams for power, signal, and control wiring.
 - 2. Include diagrams for pneumatic signal and main air tubing.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for control valves and actuators, including the following:
 - a. Flow at project design and minimum flow conditions.
 - b. Pressure differential drop across valve at project design flow condition.
 - c. Maximum system pressure differential drop (pump close-off pressure) across valve at project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.
 - f. Leakage flow at maximum system pressure differential.
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
- C. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to size products where indicated as delegated design.
- D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.
- E. Determine control valve sizes and flow coefficients by ISA 75.01.01.
- F. Control valve characteristics and rangeability shall comply with ISA 75.11.01.
- G. Selection Criteria:
 - 1. Control valves shall be suitable for operation at following conditions:
 - a. Not less than indicated and as required for system pressures and temperatures.
 - 2. Fail positions unless otherwise indicated:
 - a. Chilled Water: Last position.
 - b. Condenser Water: Last position.
 - c. Heating Hot Water: Open.
 - 3. Minimum Cv shall be calculated at 10 percent of design flow, with a coincident pressure differential equal to the system design pump head.
 - 4. In water systems, select modulating control valves at terminal equipment for a design Cv based on a pressure drop of 5 psig at design flow unless otherwise indicated.

2.2 BALL-STYLE CONTROL VALVES

- A. Ball Valves with Single Port and Characterized Disk:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Belimo Aircontrols (USA), Inc.
 - 2. Pressure Rating for NPS 1 and Smaller: Nominal 600 WOG.
 - 3. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 WOG.
 - 4. Close-off Pressure: 200 psig.
 - 5. Process Temperature Range: Zero to 212 deg F.
 - 6. Body and Tail Piece: Cast bronze ASTM B 61, ASTM B 62, ASTM B 584, or forged brass with nickel plating.
 - 7. End Connections: Threaded (NPT) ends.
 - 8. Ball: Chrome-plated brass or bronze.

- 9. Stem and Stem Extension:
 - a. Material to match ball.
 - b. Blowout-proof design.
 - c. Sleeve or other approved means to allow valve to be opened and closed without damaging the insulation or the vapor barrier seal.
- 10. Ball Seats: Reinforced PTFE.
- 11. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.
- 12. Flow Characteristic: Equal percentage.
- B. Ball Valves with Two Ports and Characterized Disk:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Belimo Aircontrols (USA), Inc.
 - 2. Pressure Rating for NPS 1 and Smaller: Nominal 600 WOG.
 - 3. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 WOG.
 - 4. Close-off Pressure: 200 psig.
 - 5. Process Temperature Range: Zero to 212 deg F.
 - 6. Body and Tail Piece: Cast bronze ASTM B 61, ASTM B 62, ASTM B 584, or forged brass with nickel plating.
 - 7. End Connections: Threaded (NPT) ends.
 - 8. Ball: Chrome-plated brass or bronze.
 - 9. Stem and Stem Extension:
 - a. Material to match ball.
 - b. Blowout-proof design.
 - c. Sleeve or other approved means to allow valve to be opened and closed without damaging the insulation or the vapor barrier seal.
 - 10. Ball Seats: Reinforced PTFE.
 - 11. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.
 - 12. Flow Characteristics for A-Port: Equal percentage.
 - 13. Flow Characteristics for B-Port: Modified for constant common port flow.
- C. Pressure-Independent Ball Valves NPS 2 and Smaller:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Belimo Aircontrols (USA), Inc.
 - b. HCI; Hydronics Components Inc.
 - 2. Integral Pressure Regulator: Located upstream of ball to regulate pressure, to maintain a constant pressure differential while operating within a pressure differential range of 5 to 50 psig.

- 3. Body: Forged brass, nickel plated, and with threaded ends.
- 4. Ball: Chrome-plated brass.
- 5. Stem and Stem Extension: Chrome-plated brass, blowout-proof design.
- 6. Stem sleeve or other approved means to allow valve to be opened and closed without damaging field-applied insulation and insulation vapor barrier seal.
- 7. Ball Seats: Reinforced PTFE.
- 8. Stem Seal: Reinforced PTFE packing ring stem seal with threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if equivalent cycle endurance can be achieved.
- 9. Flow Characteristic: Equal percentage.

2.3 BUTTERFLY-STYLE CONTROL VALVES

- A. Commercial-Grade, Two-Way Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Keystone; Tyco Flow Control.
 - 2. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
 - 3. Disc: 316 stainless steel.
 - 4. Shaft: 316 or 17-4 PH stainless steel.
 - 5. Seat: Reinforced EPDM or reinforced PTFE with retaining ring.
 - 6. Shaft Bushings: Reinforced PTFE or stainless steel.
 - 7. Replaceable seat, disc, and shaft bushings.
 - 8. Corrosion-resistant nameplate indicating:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Body and trim materials.
 - d. Flow arrow.
- B. Commercial-Grade, Three-Way Butterfly Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Keystone; Tyco Flow Control.
 - 2. Arrangement: Two valves mated to a fabricated tee with interconnecting mechanical linkage.
 - 3. Performance:
 - a. Bi-directional bubble tight shutoff at 250 psig.
 - b. Comply with MSS SP-67 or MSS SP-68.
 - c. Rotation: Zero to 90 degrees.
 - d. Linear or modified equal percentage flow characteristic.
 - 4. Body: Cast iron ASTM A 126, Class B, ductile iron ASTM A 536 or cast steel ASTM A 216/A 216M WCB fully lugged, suitable for mating to ASME B16.5 flanges.
 - 5. Disc: 316 stainless steel.
 - 6. Shaft: 316 or 17-4 PH stainless steel.
 - 7. Seat: Reinforced EPDM or reinforced PTFE seat with retaining ring.
 - 8. Shaft Bushings: Reinforced PTFE or stainless steel.

- 9. Replaceable seat, disc, and shaft bushings.
- 10. Corrosion-resistant nameplate indicating:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body size.
 - c. Body and trim materials.
 - d. Flow arrow.

2.4 GLOBE-STYLE CONTROL VALVES

- A. General Globe-Style Valve Requirements:
 - 1. Globe-style control valve body dimensions shall comply with ISA 75.08.01.
 - 2. Construct the valves to be serviceable from the top.
 - 3. For cage guided valves, trim shall be field interchangeable for different valve flow characteristics, such as equal percentage, linear, and quick opening.
 - 4. Reduced trim for one nominal size smaller shall be available for industrial valves NPS 1 and larger.
 - 5. Replaceable seats and plugs.
 - 6. Furnish each control valve with a corrosion-resistant nameplate indicating the following:
 - a. Manufacturer's name, model number, and serial number.
 - b. Body and trim size.
 - c. Arrow indicating direction of flow.
- B. Two-Way Globe Valves NPS 2 and Smaller:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Johnson Controls, Inc.
 - 2. Globe Style: Single port.
 - 3. Body: Cast bronze or forged brass with ASME B16.5, Class 250 rating.
 - 4. End Connections: Threaded.
 - 5. Bonnet: Screwed.
 - 6. Packing: PTFE V-ring.
 - 7. Plug: Top guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Range: 35 to 248 deg F.
 - 10. Ambient Operating Temperature: 35 to 150 deg F.
 - 11. Leakage: FCI 70-2, Class IV.
 - 12. Rangeability: 25 to 1.
 - 13. Equal percentage flow characteristic.
- C. Three-Way Globe Valves NPS 2 and Smaller:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Johnson Controls, Inc.
 - 2. Globe Style: Mix flow pattern.
 - 3. Body: Cast bronze or forged brass with ASME B16.5, Class 250 rating.

- 4. End Connections: Threaded.
- 5. Bonnet: Screwed.
- 6. Packing: PTFE V-ring.
- 7. Plug: Top guided.
- 8. Plug, Seat, and Stem: Brass or stainless steel.
- 9. Process Temperature Range: 35 to 248 deg F.
- 10. Ambient Operating Temperature: 35 to 150 deg F.
- 11. Leakage: FCI 70-2, Class IV.
- 12. Rangeability: 25 to 1.
- 13. Linear flow characteristic.
- D. Two-Way Globe Valves NPS 2-1/2 to NPS 6:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Johnson Controls, Inc.
 - 2. Globe Style: Single port.
 - 3. Body: Cast iron complying with ASME B61.1, Class 125.
 - 4. End Connections: Flanged, suitable for mating to ASME B16.5, Class 150 flanges.
 - 5. Bonnet: Bolted.
 - 6. Packing: PTFE cone-ring.
 - 7. Plug: Top or bottom guided.
 - 8. Plug, Seat, and Stem: Brass or stainless steel.
 - 9. Process Temperature Rating: 35 to 281 deg F.
 - 10. Leakage: 0.1 percent of maximum flow.
 - 11. Rangeability: Varies with valve size between 6 and 10 to 1.
 - 12. Modified linear flow characteristic.

2.5 SOLENOID VALVES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. ASCO Valve, Inc.
- B. Description:
 - 1. Action: Either normally open or normally closed in the event of electrical power failure as required by the application.
 - 2. Size to close against the system pressure.
 - 3. Manual override capable.
 - 4. Heavy-duty assembly.
 - 5. Body: Brass or stainless steel.
 - 6. Seats and Discs: NBR or PTFE.
 - 7. Solenoid Enclosure: NEMA 250, Type 4.

2.6 ELECTRIC AND ELECTRONIC CONTROL VALVE ACTUATORS

- A. Actuators for Hydronic Control Valves: Capable of closing valve against system pump shutoff head.
- B. Position indicator and graduated scale on each actuator.

- C. Type: Motor operated, with or without gears, electric and electronic.
- D. Voltage: Voltage selection delegated to professional designing control system.
- E. Deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
- F. Function properly within a range of 85 to 120 percent of nameplate voltage.
- G. Construction:
 - 1. For Actuators Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
 - 2. For Actuators from 100 to 400 W: Gears ground steel, oil immersed, shaft hardened steel running in bronze, copper alloy or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel or cast-aluminum housing.
 - 3. For Actuators Larger Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- H. Field Adjustment:
 - 1. Spring Return Actuators: Easily switchable from fail open to fail closed in the field without replacement.
 - 2. Gear Type Actuators: External manual adjustment mechanism to allow manual positioning when the actuator is not powered.
- I. Two-Position Actuators: Single direction, spring return or reversing type.
- J. Modulating Actuators:
 - 1. Operation: Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc and 4- to 20-mA signals.
 - c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to pulse duration (length) of signal from a dry contact closure, triac sink, or source controller.
 - d. Programmable Multi-Function:
 - 1) Control Input, Position Feedback, and Running Time: Factory or field programmable.
 - 2) Diagnostic: Feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 - 3) Service Data: Include, at a minimum, number of hours powered and number of hours in motion.
- K. Position Feedback:

- 1. Equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
- 2. Equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
- 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- L. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
 - 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- M. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- N. Valve Attachment:
 - 1. Unless otherwise required for valve interface, provide an actuator designed to be directly coupled to valve shaft without the need for connecting linkages.
 - 2. Attach actuator to valve drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 - 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- O. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.
- P. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 - 4. Provide actuator enclosure with heater and control where required by application.
- Q. Stroke Time:
 - 1. Operate valve from fully closed to fully open within 15 seconds.
 - 2. Operate valve from fully open to fully closed within 15 seconds.
 - 3. Move valve to failed position within 5 seconds.
 - 4. Select operating speed to be compatible with equipment and system operation.
- R. Sound:
 - 1. Spring Return: 62 dBA.

2. Non-Spring Return: 45 dBA.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy most stringent requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. Properly support instruments, tubing, piping, wiring, and conduits to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
- D. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- E. Firestop penetrations made in fire-rated assemblies and seal penetrations made in acoustically rated assemblies.
- F. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- G. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.2 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.3 CONTROL VALVES

- A. Install pipe reducers for valves smaller than line size. Position reducers as close to valve as possible but at distance to avoid interference and impact to performance. Install with manufacturer-recommended clearance.
- B. Install flanges or unions to allow drop-in and -out valve installation.
- C. Where indicated, install control valve with three-valve bypass manifold to allow for control valve isolation and removal without interrupting system flow by providing manual throttling valve in bypass pipe.
- D. Install drain valves in piping upstream and downstream of each control valve installed in a threevalve manifold and for each control valve larger than NPS 2.
- E. Install pressure temperature taps in piping upstream and downstream of each control valve larger than NPS 1.
- F. Valve Orientation:
 - 1. Where possible, install globe and ball valves installed in horizontal piping with stems upright and not more than 15 degrees off of vertical, not inverted.
 - 2. Install valves in a position to allow full stem movement.
 - 3. Where possible, install butterfly valves that are installed in horizontal piping with stems in horizontal position and with low point of disc opening with direction of flow.
- G. Clearance:
 - 1. Locate valves for easy access and provide separate support of valves that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install valves with at least 12 inches of clear space around valve and between valves and adjacent surfaces.
- H. Threaded Valves:
 - 1. Note internal length of threads in valve ends, and proximity of valve internal seat or wall, to determine how far pipe should be threaded into valve.
 - 2. Align threads at point of assembly.
 - 3. Apply thread compound to external pipe threads, except where dry seal threading is specified.
 - 4. Assemble joint, wrench tight. Apply wrench on valve end as pipe is being threaded.
- I. Flanged Valves:
 - 1. Align flange surfaces parallel.
 - 2. Assemble joints by sequencing bolt tightening to make initial contact of flanges and gaskets as flat and parallel as possible. Use suitable lubricants on bolt threads. Tighten bolts gradually and uniformly with a torque wrench.
- J. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- K. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of

connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

L. Install engraved phenolic nameplate with valve identification on valve and on face of ceiling directly below valves concealed above ceilings.

3.4 CHECKOUT PROCEDURES

- A. Control Valve Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check valves for proper location and accessibility.
 - 3. Check valves for proper installation for direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
 - 4. Verify that control valves are installed correctly for flow direction.
 - 5. Verify that valve body attachment is properly secured and sealed.
 - 6. Verify that valve actuator and linkage attachment are secure.
 - 7. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 8. Verify that valve ball, disc, and plug travel are unobstructed.
 - 9. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.

3.5 ADJUSTMENT, CALIBRATION, AND TESTING

- A. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
- B. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed, and 100 percent open at proper air pressures.
- C. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- D. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 23 09 23.11

SECTION 23 09 23.12 - CONTROL DAMPERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes control dampers and actuators for DDC systems.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.12.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for control dampers and actuators, including the following.
 - a. Flow at project design and minimum flow conditions.
 - b. Face velocity at project design and minimum airflow conditions.
 - c. Pressure drop across damper at project design and minimum airflow conditions.
 - d. AMCA 500D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
- C. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to size products where indicated as delegated design.
- D. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.
- E. Selection Criteria:
 - 1. Control dampers shall be suitable for operation at following conditions:
 - a. Not less than indicated and as required for system pressures and temperatures.
 - 2. Fail positions unless otherwise indicated:
 - a. Supply Air: Last position.
 - b. Return Air: Last position.
 - c. Outdoor Air: Close.
 - d. Exhaust Air: Close.
 - 3. Select modulating dampers for a pressure drop of 2 percent of fan total static pressure unless otherwise indicated.

2.2 RECTANGULAR CONTROL DAMPERS

- A. General Requirements:
 - 1. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
 - 2. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
- B. Rectangular Dampers with Aluminum Airfoil Blades:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ruskin Company.
 - b. Nailor Industries.
 - 2. Construction:
 - a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles,0.07 inch thick.
 - 2) Hat-shaped channel with integral flange(s). Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Hollow, airfoil, extruded aluminum.

- 2) Parallel or opposed blade configuration as required by application.
- 3) Material: ASTM B 211, Alloy 6063 T5 aluminum, 0.07 inch thick.
- 4) Width not to exceed 6 inches.
- 5) Length as required by close-off pressure, not to exceed 48 inches.

c. Seals:

- 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
- 2) Jambs: Stainless steel, compression type.
- d. Axles: 0.5-inch- diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Molded synthetic or stainless-steel sleeve mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.
- 3. Airflow Measurement:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Ruskin Company.
 - 2) Air Monitor.
 - b. Where indicated, provide damper assembly with integral airflow monitoring.
 - c. Zero- to 10-V dc or 4- to 20-mA scaled output signal for remote monitoring of actual airflow.
 - d. Accuracy shall be within 5 percent of the actual flow rate between the range of minimum and design airflow. For applications with a large variation in range between the minimum and design airflow, configure the damper sections and flow measurement assembly as required to comply with the stated accuracy over the entire modulating range.
 - e. Provide a straightening device as part of the flow measurement assembly to achieve the specified accuracy with configuration indicated.
 - f. Suitable for operation in untreated and unfiltered air.

- g. Provide temperature and altitude compensation and correction to maintain accuracy over temperature range encountered at site altitude.
- h. Provide automatic zeroing feature.
- 4. Airflow Control:
 - a. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1) Ruskin Company.
 - 2) Nailor Industries.
 - b. Where indicated, provide damper assembly with integral airflow measurement and control.
 - c. A factory-furnished and -calibrated controller shall be programmed, in nonvolatile EPROM, with application-specific airflow set point and range.
 - d. The controller and actuator shall communicate to control the desired airflow.
 - e. The controller shall receive a zero- to 10-V dc input signal and report a zero- to 20-mA output signal that is proportional to the airflow.
 - f. Airflow measurement and control range shall be suitable for operation between 150 to 2000 fpm.
 - g. Ambient Operating Temperature Range: Minus 40 to plus 140 deg F.
 - h. Ambient Operating Humidity Range: 5 to 95 percent relative humidity, non-condensing.
 - i. Provide unit with control transformer rated for not less than 85 VA. Provide transformer with primary and secondary protection and primary disconnecting means. Coordinate requirements with field power connection.
 - j. Provide screw terminals for interface to field wiring.
 - k. Factory mount electronics within a NEMA 250, Type 1 painted steel enclosure.
- C. Rectangular Dampers with Steel Airfoil Blades:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ruskin Company.
 - b. Nailor Industries.
 - 2. Construction:
 - a. Frame:
 - 1) Material: ASTM A 653/A 653M galvanized-steel profiles, 0.06 inch thick.
 - 2) Hat-shaped channel with integral flanges. Mating face shall be a minimum of 1 inch.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Hollow, airfoil, galvanized steel.
 - 2) Parallel or opposed blade configuration as required by application.
 - 3) Material: ASTM A 653/A 653M galvanized steel, 0.05 inch thick.
 - 4) Width not to exceed 6 inches.
 - 5) Length as required by close-off pressure, not to exceed 48 inches.
 - c. Seals:

- 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl, or plastic composite.
- 2) Jambs: Stainless steel, compression type.
- d. Axles: 0.5-inch- diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Stainless steel mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of aluminum and stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.
- D. Rectangular Dampers with Aluminum Flat Blades:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ruskin Company.
 - b. Nailor Industries.
 - 2. Construction:
 - a. Frame:
 - 1) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.12 inch thick.
 - 2) Hat-shaped channel with integral flanges.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Flat blades of extruded aluminum.
 - 2) Parallel or opposed blade configuration as required by application.
 - 3) Material: ASTM B 211, Alloy 6063 T5 extruded-aluminum profiles, 0.12 inch thick.
 - 4) Width not to exceed 6 inches.
 - 5) Length as required by close-off pressure, not to exceed 48 inches.
 - c. Seals:

- 1) Blades: Replaceable, mechanically attached extruded silicone, vinyl or plastic composite.
- 2) Jambs: Stainless steel, compression type.
- d. Axles: 0.5-inch-diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Molded-synthetic sleeve, mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of stainless steel.
 - 3) Hardware: Stainless steel.
- g. Transition:
 - 1) For round and flat oval duct applications, provide damper assembly with integral transitions to mate to adjoining field connection.
 - 2) Factory mount damper in a sleeve with a close transition to mate to field connection.
 - 3) Damper size and sleeve shall be connection size plus 2 inches.
 - 4) Sleeve length shall be not less than 12 inches for dampers without jackshafts and shall be not less than 16 inches for dampers with jackshafts.
 - 5) Sleeve material shall match adjacent duct.
- E. Rectangular Dampers with Steel Flat Blades:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ruskin Company.
 - b. Nailor Industries.
 - 2. Construction:
 - a. Frame:
 - 1) Material: Galvanized or stainless steel,0.06 inch thick.
 - 2) Hat-shaped channel with integral flanges.
 - 3) Width not less than 5 inches.
 - b. Blades:
 - 1) Flat blades with multiple grooves positioned axially for reinforcement.
 - 2) Parallel or opposed blade configuration as required by application.
 - 3) Material: Galvanized or stainless steel, 0.06 inch thick.
 - 4) Width not to exceed 6 inches.
 - 5) Length as required by close-off pressure, not to exceed 48 inches.
 - c. Seals:
 - 1) Blades: Replaceable, mechanically attached, PVC-coated polyester.
 - 2) Jambs: Stainless steel, compression type.

- d. Axles: 0.5-inch- diameter stainless steel, mechanically attached to blades.
- e. Bearings:
 - 1) Molded-synthetic sleeve, mounted in frame.
 - 2) Where blade axles are installed in vertical position, provide thrust bearings.
- f. Linkage:
 - 1) Concealed in frame.
 - 2) Constructed of stainless steel.
 - 3) Hardware: Stainless steel.

2.3 GENERAL CONTROL-DAMPER ACTUATORS REQUIREMENTS

- A. Actuators shall operate related damper(s) with sufficient reserve power to provide smooth modulating action or two-position action and proper speed of response at velocity and pressure conditions to which the damper is subjected.
- B. Actuators shall produce sufficient power and torque to close off against the maximum system pressures encountered. Actuators shall be sized to close off against the fan shutoff pressure as a minimum requirement.
- C. The total damper area operated by an actuator shall not exceed 80 percent of manufacturer's maximum area rating.
- D. Provide one actuator for each damper assembly where possible. Multiple actuators required to drive a single damper assembly shall operate in unison.
- E. Avoid the use of excessively oversized actuators which could overdrive and cause linkage failure when the damper blade has reached either its full open or closed position.
- F. Use jackshafts and shaft couplings in lieu of blade-to-blade linkages when driving axially aligned damper sections.
- G. Provide mounting hardware and linkages for connecting actuator to damper.
- H. Select actuators to fail in desired position in the event of a power failure.

2.4 ELECTRIC AND ELECTRONIC ACTUATORS

- A. Type: Motor operated, with or without gears, electric and electronic.
- B. Voltage:
 - 1. Voltage selection is delegated to professional designing control system.
 - 2. Actuator shall deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
 - 3. Actuator shall function properly within a range of 85 to 120 percent of nameplate voltage.
- C. Construction:

- 1. Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
- 2. 100 up to 400 W: Gears ground steel, oil immersed, shaft-hardened steel running in bronze, copper alloy, or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel, or cast-aluminum housing.
- 3. Greater Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
- D. Field Adjustment:
 - 1. Spring return actuators shall be easily switchable from fail open to fail closed in the field without replacement.
 - 2. Provide gear-type actuators with an external manual adjustment mechanism to allow manual positioning of the damper when the actuator is not powered.
- E. Two-Position Actuators: Single direction, spring return or reversing type.
- F. Modulating Actuators:
 - 1. Capable of stopping at all points across full range, and starting in either direction from any point in range.
 - 2. Control Input Signal:
 - a. Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs. One input drives actuator to open position, and other input drives actuator to close position. No signal of either input remains in last position.
 - b. Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10- or 2- to 10-V dc and 4- to 20-mA signals.
 - c. Pulse Width Modulation (PWM): Actuator drives to a specified position according to a pulse duration (length) of signal from a dry-contact closure, triac sink or source controller.
 - d. Programmable Multi-Function:
 - 1) Control input, position feedback, and running time shall be factory or field programmable.
 - 2) Diagnostic feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.
 - 3) Service data, including at a minimum, number of hours powered and number of hours in motion.
- G. Position Feedback:
 - 1. Equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
 - 2. Equip modulating actuators with a position feedback through current or voltage signal for remote monitoring.
 - 3. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.
- H. Fail-Safe:
 - 1. Where indicated, provide actuator to fail to an end position.
 - 2. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
- 3. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.
- I. Integral Overload Protection:
 - 1. Provide against overload throughout the entire operating range in both directions.
 - 2. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.
- J. Damper Attachment:
 - 1. Unless otherwise required for damper interface, provide actuator designed to be directly coupled to damper shaft without need for connecting linkages.
 - 2. Attach actuator to damper drive shaft in a way that ensures maximum transfer of power and torque without slippage.
 - 3. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.
- K. Temperature and Humidity:
 - 1. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
 - 2. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.
- L. Enclosure:
 - 1. Suitable for ambient conditions encountered by application.
 - 2. NEMA 250, Type 2 for indoor and protected applications.
 - 3. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
 - 4. Provide actuator enclosure with a heater and controller where required by application.
- M. Stroke Time:
 - 1. Operate damper from fully closed to fully open within 15 seconds.
 - 2. Operate damper from fully open to fully closed within 15 seconds.
 - 3. Move damper to failed position within 5 seconds.
 - 4. Select operating speed to be compatible with equipment and system operation.
 - 5. Actuators operating in smoke control systems comply with governing code and NFPA requirements.
- N. Sound:
 - 1. Spring Return: 62 dBA.
 - 2. Non-Spring Return: 45 dBA.

PART 3 - EXECUTION

- 3.1 INSTALLATION, GENERAL
 - A. Furnish and install products required to satisfy most stringent requirements indicated.

- B. Properly support dampers and actuators, tubing, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
- C. Provide ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- D. Seal penetrations made in fire-rated and acoustically rated assemblies.
- E. Fastening Hardware:
 - 1. Stillson wrenches, pliers, or other tools that will cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- F. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.

3.2 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.3 CONTROL DAMPERS

- A. Install smooth transitions, not exceeding 15 degrees, to dampers smaller than adjacent duct. Install transitions as close to damper as possible but at distance to avoid interference and impact to performance. Consult manufacturer for recommended clearance.
- B. Clearance:
 - 1. Locate dampers for easy access and provide separate support of dampers that cannot be handled by service personnel without hoisting mechanism.
 - 2. Install dampers with at least 24 inches of clear space on sides of dampers requiring service access.
- C. Service Access:
 - 1. Dampers and actuators shall be accessible for visual inspection and service.

- 2. Install access door(s) in duct or equipment located upstream of damper to allow service personnel to hand clean any portion of damper, linkage, and actuator. Comply with requirements in Section 23 33 00 "Air Duct Accessories."
- D. Install dampers straight and true, level in all planes, and square in all dimensions. Install supplementary structural steel reinforcement for large multiple-section dampers if factory support alone cannot handle loading.
- E. Attach actuator(s) to damper drive shaft.
- F. For duct-mounted and equipment-mounted dampers installed outside of equipment, install a visible and accessible indication of damper position from outside.
- G. Connect electrical devices and components to electrical grounding system. Comply with requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- H. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."Section 16075 "Electrical Identification."
- I. Install engraved phenolic nameplate with damper identification on damper and on face of ceiling where damper is concealed above ceiling.

3.4 CHECKOUT PROCEDURES

- A. Control-Damper Checkout:
 - 1. Check installed products before continuity tests, leak tests, and calibration.
 - 2. Check dampers for proper location and accessibility.
 - 3. Verify that control dampers are installed correctly for flow direction.
 - 4. Verify that proper blade alignment, either parallel or opposed, has been provided.
 - 5. Verify that damper frame attachment is properly secured and sealed.
 - 6. Verify that damper actuator and linkage attachment are secure.
 - 7. Verify that actuator wiring is complete, enclosed, and connected to correct power source.
 - 8. Verify that damper blade travel is unobstructed.

3.5 ADJUSTMENT, CALIBRATION, AND TESTING:

- A. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed back to 100 percent open.
- B. Check and document open and close cycle times for applications with a cycle time of less than 30 seconds.
- C. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

END OF SECTION 23 09 23.12

SECTION 23 09 23.14 - FLOW INSTRUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Airflow sensors.
 - 2. Airflow switches.
 - 3. Airflow transmitters.
 - 4. Liquid flow meters.
 - 5. Liquid flow sensors.
 - 6. Liquid flow switches.
 - 7. Liquid flow transmitters.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control (DDC) System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93.11 "Sequence of Operations for HVAC DDC" for requirements that relate to Section 23 09 23.14.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include diagrams for power, signal, and control wiring.
 - 3. Include diagrams for air and process signal tubing.
 - 4. Number-coded identification system for unique identification of wiring, cable, and tubing ends.
- C. Delegated-Design Submittal:
 - 1. Schedule and design calculations for flow instruments, including the following.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure drop at Project design and minimum flow conditions.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each product requiring a certificate.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

FLOW INSTRUMENTS

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Select and size products to achieve specified performance requirements.
- B. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 GENERAL REQUIREMENTS FOR FLOW INSTRUMENTS

- A. Air sensors and transmitters shall have an extended range of 10 percent above Project design flow and 10 percent below minimum Project flow to signal abnormal flow conditions and to provide flexibility for changes in operation.
- B. Liquid and steam sensors, meters, and transmitters shall have an extended range of 10 percent above Project design flow and 10 percent below Project minimum flow to signal abnormal flow conditions and to provide flexibility for changes in operation.

2.3 AIRFLOW SENSORS:

- A. Performance Requirements:
 - 1. Adjustable for changes in system operational parameters.
 - 2. Airflow Sensor and Transmitter Range: Extended range of 10 percent above Project design flow and 10 percent below minimum Project flow to signal abnormal flow conditions.
 - 3. Manufacturer shall certify that each flow instrument indicated complies with specified performance requirements and characteristics.
 - a. Product certificates are required.
- B. Pitot-Tube Airflow Sensor Station:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor Corporation.
 - Casing: Galvanized sheet steel at least 0.079 inch thick with coating complying with ASTM A 653/A 653M, G90. Casings shall be stainless steel, 0.0781 inch thick, when connected to stainless duct and aluminum, 0.063 inch thick, when connected to aluminum duct.
 - a. Joints and Seams: Continuously weld. Clean galvanized areas damaged by welding and coat with aluminum paint.
 - b. Casing Depth: At least 8 inches.
 - c. Casing Flanges: Outward flange, minimum flange face 1.5 inches.
 - d. Casing Configuration and Size: Match shape (rectangular, round, flat oval) and same size as adjacent duct unless otherwise indicated.
 - 3. Include an open parallel cell air straightener or air equalizer honeycomb mechanically fastened to casing.

- a. Construct straightener or equalizer from Type 3003 aluminum or Type 316 stainless steel, depending on casing material. Use stainless steel for units with stainless-steel casings.
- 4. Construct pressure sensor array from drawn copper or stainless-steel tubing. Use stainless steel for units with stainless-steel casings. Copper tubing shall comply with ASTM B 75 and ASTM B 280. Minimum tube wall thickness shall be 0.030 inch. Include internal piping and external pressure transmitter ports.
- 5. Station Labeling: Identification label on each station casing indicating model number, size, area, and application-specific airflow range.
- 6. Performance:
 - a. Pressure Loss: 0.015-inch wg at 1000 fpm, or 0.085-inch wg at 2000 fpm.
 - b. Accuracy: Within 2 percent of actual airflow.
 - c. Self-Generated Sound: NC 40 and sound level within the duct shall not be amplified.
 - d. Performance rated and tested according to AMCA 610. Each station shall bear the AMCA seal.
- C. Thermal Airflow Station:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ebtron, Inc.
 - 2. Source Limitations: Obtain airflow and temperature measuring sensors and transmitters from single manufacturer.
 - 3. Description: Airflow station shall consist of one or more sensor probes mounted in a casing, and a remotely mounted microprocessor-based transmitter.
 - 4. Performance:
 - a. Capable of independently processing up to 16 independently wired sensor assemblies.
 - b. Airflow rate of each sensor assembly shall be equally weighted and averaged by transmitter prior to output.
 - c. Temperature of each sensor assembly shall be velocity weighted and averaged by transmitter prior to output.
 - d. Listed and labeled by an NRTL as successfully tested as an assembly according to UL 873, "Temperature-Indicating and Regulating Equipment."
 - e. Components shall be interconnected by exposed NRTL-listed plenum-rated cable or non-listed cable placed in conduit.
 - f. Each flow station shall be factory calibrated at a minimum of 16 airflow rates and three temperatures to standards that are traceable to NIST.
 - g. Airflow Accuracy: Within 3 percent of reading over the entire operating airflow range.
 - 1) Devices whose accuracy is combined accuracy of transmitter and sensor probes must demonstrate that total accuracy meets the performance requirements throughout the measurement range.
 - h. Temperature Accuracy: Within 0.2 deg F over entire operating range of minus 20 to plus 140 deg F.
 - i. Sensor Ambient Operating Temperature Range: Minus 20 to plus 160 deg F.
 - j. Transmitter Ambient Operating Temperature Range: Minus 20 to plus 120 deg F.
 - k. Sensor and Transmitter Ambient Operating Humidity Range: Zero to 99 percent, noncondensing.
 - I. Instrument shall compensate for changes in air temperature and density throughout calibrated velocity range for seasonal extremes at Project location.

- m. Pressure Drop: 0.05-inch wg at 2000 fpm across a 24-by-24-inch area.
- n. Instruments mounted in throat or face of fan inlet cone shall not negatively influence fan performance by reducing flow more than 1 percent of Project design flow or negatively impact fan-generated sound. Losses in performance shall be documented with submittal data, and adjustments to compensate for performance impact shall be made to fan in order to deliver Project design airflow indicated.
- 5. Sensor Assemblies:
 - a. Each sensor probe shall contain two individually wired, hermetically sealed bead-in-glass thermistors.
 - b. Mount thermistors in sensor using a marine-grade, waterproof epoxy.
 - c. Thermistor leads shall be protected and not exposed to the environment.
 - d. Each sensor assembly shall independently determine airflow rate and temperature at each measurement point.
 - e. Each sensor probe shall have an integral cable for connection to remotely mounted transmitter.
 - f. Sensor Probe Material: Gold anodized, extruded 6063 aluminum tube or Type 304 stainless steel.
 - g. Probe Assembly Mounting Brackets Material: Type 304 stainless steel.
- 6. Casing:
 - a. Factory mount sensor probes in an airflow station casing to create a single assembly for field mounting.
 - b. Material: Galvanized sheet steel at least 0.079 inch thick with coating complying with ASTM A 653/A 653M, G90. Casings shall be stainless steel, 0.0781 inch thick, when connected to stainless duct and aluminum, 0.063 inch thick, when connected to aluminum duct.
 - c. Joints and Seams: Continuously weld. Clean galvanized areas damaged by welding and coat with zinc-rich paint.
 - d. Casing Depth: At least 8 inches.
 - e. Include casing inlet and discharge connections with a minimum 2-inch face flange.
- 7. Transmitter:
 - a. Integral digital display capable of simultaneously displaying total airflow and average temperature, individual airflow, and temperature readings of each independent sensor assembly.
 - b. Capable of field configuration and diagnostics using an onboard push-button interface and digital display.
 - 1) Include an integral power switch to operate on 24-V ac (isolation not required) and include the following:
 - a) Integral protection from transients and power surges.
 - b) Circuitry to ensure reset after power disruption, transients, and brownouts.
 - c) Integral transformer to convert field power source to operating voltage required by instrument.
 - c. Remote Signal Interface:
 - 1) Linear Analog Signals for Airflow and Temperature: Fuse protected and isolated, field selectable,.
 - 2) RS-485: BACnet-ARCNET, BACnet-MS/TP, and Modbus-RTU.

- 3) 10 Base-T Ethernet: BACnet Ethernet, BACnet-IP, Modbus-TCP, and TCP/IP.
- 4) LonWorks free topology.

2.4 AIRFLOW SWITCHES

- A. Polymer Film Sail Switch:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Honeywell International Inc.
 - 2. Construction:
 - a. Polyester film sail encasing a wire frame.
 - b. Sail actuates a SPDT snap switch.
 - c. Enclosure Material: Zinc-plated steel.
 - d. Enclosure with removable cover.
 - e. NEMA 250, Type 1 enclosure.
 - f. Removable spring counterbalances sail to allow mounting in either vertical (up or down) or horizontal airflow.
 - g. Electrical Connections: Screw terminals.
 - h. Conduit Connections: 1/2-inch trade size conduit knock outs on top and bottom.
- B. Stainless-Steel Single Vane Switch:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 2. Performance:
 - a. Voltage: 125-, 240-, and 480-V ac.
 - b. Full Load Current: 9.8 A at 125-V ac.
 - c. Field-Adjustable Velocity Set Point: 400 to 1600 fpm.
 - d. Maximum Process Temperature: 180 deg F.
 - e. Maximum Ambient Temperature: 125 deg F.
 - 3. Construction:
 - a. Stainless-steel vane.
 - b. Vane actuates a SPDT snap switch.
 - c. Enclosure Material: Die-cast metal.
 - d. Enclosure with removable cover.
 - e. NEMA 250, Type 1 enclosure.
 - f. Screw set-point adjustment.
 - g. Electrical Connections: Screw terminals.
 - h. Conduit Connections: 1-inch trade size conduit knock outs on top and bottom.

2.5 AIRFLOW TRANSMITTERS

A. Airflow Transmitters with 0.25 Percent Accuracy and Auto-Zero Feature:

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor Corporation.
- Transmitter shall receive total- and static-pressure signals from a flow element, amplify signals, extract the square foot, and scale the signals to produce 4- to 20-mA dc output signals linear to airflow.
- 3. NEMA 250, Type 1 enclosure.
- 4. Construct assembly so shock, vibration, and pressures surges of up to 1 psig will neither harm transmitter, nor affect its accuracy.
- 5. Transmitter with automatic zeroing circuit capable of automatically readjusting transmitter zero at predetermined time intervals. The automatic zeroing circuit shall re-zero the transmitter to within 0.1 percent of true zero.
- 6. Performance:
 - a. Range: As required by application and at least 10 percent below minimum airflow and 10 percent greater than design airflow.
 - b. Calibrated Span: Field adjustable, minus 40 percent of the range.
 - c. Accuracy: Within 0.25 percent of natural span.
 - d. Repeatability: Within 0.15 percent of calibrated span.
 - e. Linearity: Within 0.2 percent of calibrated span.
 - f. Hysteresis and Deadband (Combined): Less than 0.2 percent of calibrated span.
- 7. Integral digital display for continuous indication of airflow.
- B. Pressure Differential Transmitters for Airflow Measurement:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Setra System.
 - 2. Output Signals:
 - a. Analog Current Signal:
 - 1) Two-wire, 4- to 20-mA dc current source.
 - 2) Signal capable of operating into 800-ohm load.
 - b. Analog Voltage Signal:
 - 1) Three wire, zero to 10 V.
 - 2) Minimum Load Resistance: 1000 ohms.
 - 3. Display: Four-digit digital with minimum 0.4-inch- high numeric characters.
 - 4. Operator Interface:
 - a. Zero and span adjustments located behind cover.
 - 5. Construction:
 - a. Plastic casing with removable plastic cover.
 - b. Fittings: Swivel fittings for connection to copper tubing or barbed fittings for connection to polyethylene tubing. Fittings on bottom of instrument case.
 - c. Screw terminal block for wire connections.

- d. Vertical plane mounting.
- e. NEMA 250, Type 4.
- f. Mounting Bracket: Appropriate for installation.

2.6 LIQUID FLOW METERS

- A. General Requirements for Liquid Flow Meters:
 - 1. Adjustable for changes in system operational parameters.
 - 2. Liquid and Steam Sensors, Meters, and Transmitters: Extended range of 10 percent above Project design flow and 10 percent below Project minimum flow to signal abnormal flow conditions.
 - 3. Manufacturer shall certify that each flow instrument indicated complies with specified performance requirements and characteristics.
 - 4. Product certificates are required.
- B. Insertion Paddle Wheel Flow Meter, NPS 1:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Badger Meter, Inc.
 - 2. Performance:
 - a. Range: 0.33 to 20 fps.
 - b. Accuracy: Within 0.5 percent of flow rate.
 - c. Repeatability: Within 0.5 percent.
 - d. Ambient Temperature: 14 to 150 deg F.
 - e. Maximum Process Temperature: 300 deg F with PEEK sensor tip.
 - f. Maximum Pressure: 350 psig at 300 deg F with PEEK sensor tip.
 - g. Pressure Drop: Up to 0.5 psig at 10 fps for pipe sizes NPS 1-1/2 and larger.
 - 3. Output Signal:
 - a. Unidirectional Flow Meter: Frequency pulse.
 - b. Unidirectional Flow Meter: Analog, two wire, loop-powered, 4- to 20-mA signal.
 - c. Unidirectional Flow Meter: Scaled pulse.
 - d. Bi-directional Flow Meter: Analog 4- to 20-mA signal plus direction.
 - e. Bi-directional Flow Meter: Scaled pulse.
 - 4. Operator Interface:
 - a. Programming: Instrument programming through computer and programming kit.
 - b. Digital Display: Eight-character digital display of flow rate, flow totalization, input, output, and flow direction for bi-directional meters.
 - 5. Construction:
 - a. Wetted Metal Parts (Including Sensor Stem, Mounting Adapter, and Isolation Valve): Type 316 stainless steel.
 - b. Sensor Tip: PPS or PEEK.
 - c. Shaft: Tungsten carbide.
 - d. Impeller: Stainless steel.

- e. Process Connection: NPS 1.
- f. Instrument Isolation Valve: Full port ball valve for system isolation.
- g. Insertion Depth: Threaded positioning nut for accurate sensor depth in the pipe.
- h. Electronics Enclosure:
 - 1) Polypropylene with Viton-sealed acrylic cover.
 - 2) Removable cover.
 - 3) NEMA 250, Type 4X.
 - 4) Electrical Connection: Screw terminals.
 - 5) Conduit Connection: 1/2-inchtrade size.
- C. Insertion Turbine Flow Meter:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ONICON Incorporated.
 - 1) Within 1 percent of actual flow between the flow velocity range of 3 to 30 fps.
 - 2) Within 2 percent of actual flow between the flow velocity range of 0.4 to 20 fps.
 - 3) Within 0.5 percent of actual reading at the calibrated velocity.
 - b. Wet calibrate and tag sensors to standards traceable to NIST, and provide each sensor with a certificate of calibration.
 - 2. Sensor:
 - a. For Pipe Sizes NPS 2 and Smaller: Single turbine sensors.
 - b. For Pipe Sizes NPS 2-1/2 and Larger: Dual turbine sensors.
 - c. Piping with Bi-directional Flow: Bi-directional dual turbine sensors.
 - d. Dual turbine sensors shall have dual, contra-rotating turbine elements, each turbine element with its own rotational sensing system, and an averaging circuit.
 - e. Rotational sensing of each turbine shall be accomplished electronically by sensing electronic impedance change (non-magnetic and non-photoelectric).
 - f. Sensor shall have an integral frequency output linear with flow rate. For dual turbine units, with individual top and bottom turbine outputs for diagnostic purposes.
 - g. Bi-directional sensors shall have isolated solid-state dry contacts with a contact rating of 100 mA at 50 V. The contacts shall close when the flow in direction of arrow is 0.18 fps or more.
 - h. Flow sensor shall be complete with installation hardware necessary to enable insertion and removal from pipe without system shutdown.
 - i. Construct turbine elements of polypropylene with sapphire jewel bearings and tungsten carbide shafts. Construct wetted metal components of Type 316 stainless steel, including installation hardware.
 - j. House sensor electronics in a NEMA 250, Type 4 enclosure.
 - k. Enclosure shall include connection(s) for field-installed conduit.
 - I. Sensor shall have cable of length sufficient to connect to display module.
 - m. Sensor housing shall have full port Type 316 stainless-steel ball valve for system isolation.
 - 3. Display Module:
 - a. Remote from sensor.
 - b. House in a NEMA 250, Type 4X enclosure.
 - c. Label terminal strip for all wiring connections.
 - d. 120-V ac power supply with 24-V dc output to power the flow sensor.

- e. Remote Interface:
 - 1) Hardwired Analog Outputs for Flow Rate and Totalization: 4 to 20 mA and zero- to 10-V dc.
 - 2) Serial Communication Interface: Compatible with host to share flow rate and totalized flow data.
 - 3) Outputs linear to within 0.1 percent of calibrated span.
- f. Digital display for flow rate and totalized flow.
 - 1) At least eight display digits for totalization.
 - 2) Bi-directional units with separate digital display for flow and totalization in each direction.
- g. Local reset of flow totalization.
- h. Program and data shall be stored in nonvolatile memory in event of power loss.
- i. For bi-directional units, with display of flow direction (contacts open or closed).
- D. Inline Turbine Flow Meter:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. ONICON Incorporated.
 - 1) Within 2 percent of actual flow between the flow range of 0.8 to 38 gpm.
 - 2) Within 0.5 percent of actual reading at the calibrated velocity.
 - b. Wet calibrate and tag sensors to standards traceable to NIST, and provide each sensor with a certificate of calibration.
 - 2. Sensor:
 - a. Rotational sensing of turbine shall be accomplished electronically by sensing electronic impedance change (non-magnetic and non-photoelectric).
 - b. Sensor shall have an integral frequency output linear with flow rate.
 - c. Sensor shall have threaded union on each end.
 - d. Construct turbine elements of polypropylene with sapphire jewel bearings and tungsten carbide shafts.
 - e. Construct wetted metal components of brass or stainless steel.
 - f. House sensor electronics in a NEMA 250, Type 4 enclosure.
 - g. Enclosure shall include connection(s) for field-installed conduit.
 - h. Sensor shall have cable of length sufficient to connect to display module.
 - 3. Display Module:
 - a. Remote from sensor.
 - b. Enclosure: NEMA 250, Type 4X.
 - c. Label terminal strip for all wiring connections.
 - d. 120-V ac power supply with 24-V dc output to power the flow sensor.
 - e. Remote Interface:
 - 1) Hardwired Analog Outputs for Flow Rate and Totalization: 4 to 20 mA and zero- to 10-V dc.

- 2) Serial Communication Interface: Compatible with host to share flow rate and totalized flow data.
- 3) Outputs linear to within 0.1 percent of calibrated span.
- f. Digital display of flow rate and totalized flow.
- g. At least eight display digits for totalization.
- h. Local reset of flow totalization.
- i. Program and data shall be stored in nonvolatile memory in the event of power loss.
- 2.7 LIQUID FLOW SENSORS (PRIMARY ELEMENTS)
 - A. Venturis:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Preso Meters.
 - 2. On request, submit independent testing documentation (product test reports), demonstrating compliance with specified performance.
 - 3. Standard: ASME MFC-3M.
 - 4. Performance:
 - a. Accuracy within 0.5 percent of measured flow throughout flow range from design to 10 percent of design flow.
 - b. Accuracy with five pipe diameters of straight pipe upstream and two pipe diameters downstream.
 - c. Size and beta ratio shall be matched with transmitter to provide accuracy of entire assembly within 1 percent of design flow rate, when the flow rate is allowed to vary between 10 to 100 percent of the design.
 - 5. Construction:
 - a. One-piece bronze or brass construction with threaded connections for pipe sizes NPS 1/2 through NPS 2.
 - b. One-piece plated cast steel with flanged connections for pipe sizes NPS 2-1/2 through NPS 8, and fabricated steel with flanged connections for larger sizes.
 - c. Sensing Taps: Two, accurately located built-in sensing taps, nipples, shut-off valves, and quick connect coupling.
 - d. Identification Tag: Attached to each venturi with a chain and label indicating pipe size, venturi series, station identification, and meter reading at flow rate and pressure differential.
 - e. Use venturi with pressure differential transmitter.
 - B. Orifice Plates:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Rosemount; Emerson Process Management.
 - 2. Standards: ASME MFC-3M or ASME MFC-14M.
 - 3. Performance:
 - a. Orifice plates shall be sharp, square-edged concentric type.

- b. Shop fabricate and calibrate orifice meter runs through NPS 2.
- c. Field fabricate orifice runs NPS 3 and larger.
- d. Meter run piping or tubing shall be uniform internal surface, which is free of internal grooves and striations, but is not polished. Out of roundness shall not exceed 0.5 percent. A reduction of the pipe diameter or distortion caused by welding is unacceptable.
- e. Size orifice plates for 100-inch wg pressure differential, except that the absolute value of the meter range shall not exceed the absolute value of the flowing pressure.
- f. Ratio of orifice diameter to actual internal pipe diameter d/B (beta) shall be between 0.70 and 0.30.
- g. Locate orifice plates in horizontal or vertical lines in accordance with good metering practice.
- h. Minimum upstream and downstream straight pipe shall comply with ASME Fluid Meters Research Committee Reports.
- 4. Construction:
 - a. Fabricate the orifice plate and matching companion flanges of Type 316 stainless steel.
 - b. Transmitter connection shall be at least NPS 1/2.
 - c. Stamp the orifice plates with the number and the orifice bore on the handle of the plate.
- 5. Use orifice plate with pressure differential transmitter.
- 6. Calibration information and calculations shall comply with either of the referenced standards for each orifice plate.
- C. Portable Meter Package for Liquid Flow Sensors:
 - 1. Metal-reinforced-plastic carrying case.
 - 2. Waterproof meter with nominal 6-inch round dial face.
 - 3. Meter with dual rupture-proof liquid-filled bellows having integral temperature compensation.
 - 4. Meter with external range and zero adjustment.
 - 5. Multiple meters in package, if required to accommodate venturis with a wide range of pressure signals.
 - 6. Two connecting hoses, 10-feet long, with quick connect couplings compatible with venturi couplings.
 - 7. Two brass blowdown valves with Buna-N seals and blowdown hoses.
 - 8. Instruction book with flow versus differential curves.
 - 9. Suitable for working pressure of 200 psigat 200 deg F.
 - 10. Portable meter package to connect to flow sensor without disturbing connection to pressure differential transmitter. Provide isolation valves at connections.
 - 11. Turn over to Owner at Project completion.

2.8 LIQUID FLOW SWITCHES

- A. Liquid Flow Switch (Bellows Type):
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. W. E. Anderson; Dwyer Instruments, Inc.
 - 2. Performance:

- a. Flow Rate Actuation and De-actuation: Varies with vane combination and set-point adjustment.
- b. Pressure Limit: 145 psig.
- c. Temperature Limit: 230 deg F.
- d. Electrical Rating: 10 A resistive, 3 A conductive at 250-V ac.
- e. Switch Type: SPDT snap switch.
- 3. Wetted Parts Construction:
 - a. Bellows: Tin-bronze.
 - b. Vanes: Stainless steel.
 - c. Body: Forged brass.
 - d. Process Connection: NPS 1.
- 4. Enclosure:
 - a. Die-cast aluminum alloy.
 - b. NEMA 250, Type 4.
 - c. Electrical Connection: Cable gland with attached wire leads.
- B. Liquid Flow Switch (Magnetic Type):
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. W. E. Anderson; Dwyer Instruments, Inc.
 - 2. Performance:
 - a. Flow Rate Actuation and De-actuation: Varies with vane combination.
 - b. Pressure Limit: 1000 psig for brass body, 2000 psig for Type 316 stainless-steel body.
 - c. Temperature Range: Minus 4 to plus 275 deg F.
 - d. Electrical Rating: 10 A at 125/250-V ac.
 - e. Switch Type: SPDT snap switch.
 - 3. Wetted Parts Construction:
 - a. Vanes: Type 316 stainless steel.
 - b. Body: Brass.
 - c. Magnetic Keeper: Type 430 stainless steel.
 - d. Process Connection: NPS 1-1/2.
 - 4. Enclosure:
 - a. Die-cast aluminum alloy.
 - b. Threaded cover.
 - c. NEMA 250, Type 4.
 - d. Electrical Connection: Terminal block.
 - e. Conduit Connection: 3/4-inchtrade size.

2.9 LIQUID FLOW TRANSMITTERS

A. Liquid Pressure Differential Transmitter for Flow Measurement:

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
- 2. Analog Output Current Signal:
 - a. Two wire, 4- to 20-mA dc current source.
 - b. Signal capable of operating into 1000-ohm load.
- 3. Operator Interface:
 - a. Zero and span adjustments located behind cover.
 - b. Bleed screws on side of body, two screws on low-pressure side and one screw on highpressure side, for air in line and pressure cavity.
- 4. Construction:
 - a. Aluminum and stainless-steel enclosure with removable cover.
 - b. Wetted parts of transmitter constructed of 17-4 PH or 300 series stainless steel.
 - c. NPS 1/4 process connections on side of instrument enclosure.
 - d. Knock out for 1/2-inch trade size conduit connection on side of instrument enclosure.
 - e. Screw terminal block for wire connections.
 - f. NEMA 250, Type 4X.
 - g. Mounting bracket shall be suitable for installation.
- 5. Transmitter shall have three-valve manifold. Construct manifold of brass, bronze, or stainless steel. Manifold shall have NPS 1/4 process connections.

PART 3 - EXECUTION

3.1 INSTRUMENT APPLICATIONS

- A. Select from instrument types to achieve performance requirements and characteristics indicated while subjected to full range of system operation encountered.
- B. Duct-Mounted Airflow Sensors:
 - 1. Measured Velocities 500 fpm and Less: Thermal airflow station.
 - 2. Measured Velocities Greater than 500 fpm: Pitot-tube airflow sensor station.
- C. Damper-Mounted Airflow Sensors:
 - 1. Measured Velocities 400 fpm and Less: Thermal airflow station.
 - 2. Measured Velocities Greater than 500 fpm: Pitot-tube airflow sensor station.
- D. Fan-Mounted Airflow Sensors:
 - 1. Measured Velocities 500 fpm and Less: Thermal airflow station.
 - 2. Measured Velocities Greater than 500 fpm: Thermal airflow station.
- E. Airflow Switches:

- 1. Measured Velocities 400 fpmand Less: Polymer film sail switch.
- 2. Measured Velocities Greater than 400 fpm: Stainless-steel single-vane switch.
- F. Airflow Transmitters for Use with Pitot-Tube-Type Sensors:
 - 1. Exhaust Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 2. Outdoor Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 3. Return Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.
 - 4. Supply Air Airflow: Airflow transmitter with 0.25 percent accuracy and auto-zero feature.

3.2 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. Properly support instruments, tubing, piping wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a force.
- D. Install ceiling, floor, roof, and wall openings and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- E. Install products in locations that are accessible and that will permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- F. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they will be subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including, but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings with a corrosive-resistant coating that is suitable for environment.
 - 4. Where instruments are located in a corrosive environment and are not corrosive resistant from the manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.3 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."

- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.4 INSTRUMENTS, GENERAL INSTALLATION REQUIREMENTS

A. Mounting Location:

- 1. Rough-in: Outline instrument-mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
- 2. Install switches and transmitters for air and liquid flow associated with individual air-handling units and connected ductwork and piping near air-handlings units co-located in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
- 3. Install liquid and steam flow switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
- 4. Install airflow switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
- 5. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
- 6. Install instruments in steam, liquid, and liquid-sealed-piped services below their process connection point. Slope tubing down to instrument with a slope of 2 percent.
- 7. Install instruments in dry gas and non-condensable-vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 2 percent.
- B. Mounting Height:
 - 1. Mount instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
 - 2. Mount switches and transmitters, located in mechanical equipment rooms and other similar space not subject to code, state, and federal accessibility requirements, within a range of 42 to 72 inchesabove the adjacent floor, grade, or service catwalk or platform.
 - a. Make every effort to mount at 60 inches.
- C. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated using neoprene gaskets or grommets.

3.5 FLOW INSTRUMENTS INSTALLATION

- A. Airflow Sensors:
 - 1. Install sensors in straight sections of duct with manufacturer-recommended straight duct upstream and downstream of sensor.

- Installed sensors shall be accessible for visual inspection and service. Install access door(s) in duct or equipment located upstream of sensor, to allow service personnel to hand clean sensors.
- B. Liquid and Steam Sensors:
 - 1. Install sensors in straight sections of piping with manufacturer-recommended straight piping upstream and downstream of sensor.
 - 2. Alert manufacturer where installation cannot accommodate recommended clearance, and solicit recommendations for field modifications to installation, such as flow straighteners, to improve condition.
 - 3. Install pipe reducers for in-line sensors smaller than line size. Position reducers at distance from sensor to avoid interference and impact on accuracy.
 - 4. Install in-line sensors with flanges or unions to provide drop-in and -out installation.
- C. Liquid Flow Meters:
 - 1. Install meters in straight sections of piping with manufacturer-recommended straight piping upstream and downstream of sensor.
 - 2. Install pipe reducers for in-line meters smaller than line size. Install reducers at distance from meter to avoid interference and impact on accuracy.
 - 3. Install in-line meters with flanges or unions to provide drop-in and -out installation.
 - 4. Insertion Meters:
 - a. Install system process connections full size of meter connection, but not less than NPS 1. Provide stainless-steel bushing if required to mate to system connection.
 - b. Install meter in top dead center of horizontal pipe positioned in an accessible location to allow for inspection and replacement.
 - c. In applications where top-dead-center location is not possible due to field constraints, install meter at location along top half of pipe if acceptable by manufacturer for mounting orientation.
- D. Liquid Switches:
 - 1. Install system process connection full size of switch connection, but not less than NPS 1. Install stainless-steel bushing if required to mate switch to system connection.
 - 2. Install switch in top dead center of horizontal pipe positioned in an accessible location to allow for inspection and replacement.
 - 3. In applications where top-dead-center location is not possible due to field constraints, install switch at location along top half of pipe if switch is acceptable by manufacturer for mounting orientation.
- E. Transmitters:
 - 1. Install airflow transmitters serving an air system in a single location adjacent to or within system control panel.
 - 2. Install liquid flow transmitters, not integral to sensors, in vicinity of sensor. Where multiple flow transmitters serving same system are located in same room, co-locate transmitters by system to provide service personnel a single and convenient location for inspection and service.

3.6 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Install engraved phenolic nameplate with instrument identification and on face of ceiling directly below instruments concealed above ceilings.

3.7 CHECKOUT PROCEDURES

A. Description:

- 1. Check out installed products before continuity tests, leak tests, and calibration.
- 2. Check instruments for proper location and accessibility.
- 3. Check instruments for proper installation with respect to direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.
- 4. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.
- B. Flow Instrument Checkout:
 - 1. Verify that sensors are installed correctly with respect to flow direction.
 - 2. Verify that sensor attachment is properly secured and sealed.
 - 3. Verify that processing tubing attachment is secure and isolation valves have been provided.
 - 4. Inspect instrument tag against approved submittal.
 - 5. Verify that recommended upstream and downstream distances have been maintained.

3.8 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.
- B. Coordinate video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- C. Record videos on DVD disks.
- D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.14

SECTION 23 09 23.16 - GAS INSTRUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes the Following Gas Instruments:
 - 1. Carbon-dioxide sensors and transmitters.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.16.

1.2 DEFINITIONS

- A. NDIR: Nondispersive infrared.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include diagrams for power, signal, and control wiring.
 - 3. Number-coded identification system for unique identification of wiring, cable, and tubing ends.

PART 2 - PRODUCTS

2.1 CARBON-DIOXIDE SENSORS AND TRANSMITTERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Vaisala.
- B. Construction:
 - 1. House electronics in an ABS plastic enclosure. Provide equivalent of NEMA 250, Type 1 enclosure for wall-mounted space applications and NEMA 250, Type 4 for duct-mounted applications.
 - 2. Equip with digital display for continuous indication of carbon-dioxide concentration.
- C. Performance:

- 1. Measurement Range: Zero to 2000 ppm.
- 2. Accuracy: Within 2 percent of reading, plus or minus 30 ppm.
- 3. Repeatability: Within 1 percent of full scale.
- 4. Temperature Dependence: Within 0.05 percent of full scale over an operating range of 25 to 110 deg F.
- 5. Long-Term Stability: Within 5 percent of full scale after more than five years.
- 6. Response Time: Within 60 seconds.
- 7. Warm-up Time: Within five minutes.
- D. Provide calibration kit. Turn over to Owner at start of warranty period.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Furnish and install products required to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. Properly support instruments, tubing, piping, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to seismic loads.
- D. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by using excessive force or oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- E. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- F. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they are subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments, including but not limited to, the following:
 - a. Laboratory exhaust airstreams.
 - b. Process exhaust airstreams.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 4. Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.2 ELECTRICAL POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.3 INSTRUMENTS, GENERAL INSTALLATION REQUIREMENTS

- A. Mounting Location:
 - 1. Install transmitters for gas associated with individual air-handling units and associated connected ductwork and piping near air-handlings units co-located in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 - 2. Install gas switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 3. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
 - 4. Install instruments in dry gas and non-condensable vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 2 percent.
- B. Mounting Height:
 - 1. Mount instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
 - 2. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code, state, and federal accessibility requirements within a range of 42 to 72 inchesabove the adjacent floor, grade, or service catwalk or platform.
 - a. Make every effort to mount at 60 inches.
- C. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated, using neoprene gaskets or grommets.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Install engraved phenolic nameplate with instrument identification on face.

3.5 CHECKOUT PROCEDURES

- A. Check out installed products before continuity tests, leak tests, and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that impact performance.
- D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material, and support.

3.6 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.
- B. Coordinate gas instrument demonstration video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- C. Record videos on DVD disks.
- D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.16

SECTION 23 09 23.23 - PRESSURE INSTRUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Air-pressure sensors.
 - 2. Air-pressure switches.
 - 3. Air-pressure transmitters.
 - 4. Liquid-pressure switches.
 - 5. Liquid-pressure transmitters.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.23.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 AIR-PRESSURE SENSORS

A. Duct Insertion Static Pressure Sensor:

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
- 2. Insertion length shall be at 4 inches.
- 3. Sensor with four radial holes of 0.04-inch diameter.
- 4. Brass or stainless-steel construction.
- 5. Sensor with threaded end support, sealing washers and nuts.
- 6. Connection: NPS 1/4 compression fitting.
- 7. Suitable for flat oval, rectangular, and round duct configurations.
- B. Outdoor Static Pressure Sensor:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 2. Provides average outdoor pressure signal.
 - 3. Sensor with no moving parts.
 - 4. Kit includes sensor, vinyl tubing mounting hardware.
- C. Space Static Pressure Sensor for Wall Mounting:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 2. 100-micron filter mounted in stainless-steel wall plate senses static pressure.
 - 3. Wall plate provided with gasket and screws, and sized to fit standard single-gang electrical box.
 - 4. Back of sensor plate fitted with brass barbed fitting for tubing connection.
- D. Space Static Pressure Sensor for Recessed Ceiling Mounting:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Air Monitor Corporation.
 - 2. Stainless-steel round plate with perforated center arranged to sense space static pressure. Exposed surfaces provided with brush finish.
 - 3. Sensor intended for flush mount on face of ceiling with pressure chamber recessed in ceiling plenum.
 - 4. Back of sensor plate fitted with multiple sensing ports, pressure impulse suppression chamber, airflow shielding, and 0.125-inch fitting for concealed tubing connection.
 - 5. Performance: Within 1 percent of actual room static pressure in vicinity of sensor while being subjected to an air velocity of 1000 fpm from a 360 degree radial source.

2.2 AIR-PRESSURE SWITCHES

- A. Air-Pressure Differential Switch:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

- a. Dwyer Instruments, Inc.
- 2. Electrical Connections: Three-screw configuration, including one screw for common operation and two screws for field-selectable normally open or closed operation.
- 3. Enclosure Conduit Connection: Knock out or threaded connection.
- 4. User Interface: Screw-type set-point adjustment located inside removable enclosure cover.
- 5. High and Low Process Connections: Threaded, NPS 1/8.
- 6. Enclosure:
 - a. Dry Indoor Installations: NEMA 250, Type 1.
 - b. Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
 - c. Hazardous Environments: Explosion proof.
- 7. Operating Data:
 - a. Electrical Rating: 15 A at 120- to 480-V ac.
 - b. Pressure Limits:
 - 1) Continuous: 45 inches wg.
 - 2) Surge: 10 psig.
 - c. Temperature Limits: Minus 30 to 180 deg F.
 - d. Operating Range: Approximately 2 times set point.
 - e. Repeatability: Within 3 percent.
 - f. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 AIR-PRESSURE TRANSMITTERS

- A. Air-Pressure Differential Transmitter:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Ashcroft Inc.
 - 2. Output Signals:
 - a. Analog Current Signal:
 - 1) Two-wire, 4- to 20-mA dc current source.
 - 2) Signal capable of operating into 1000-ohm load.
 - b. Analog Voltage Signal:
 - 1) Three wire, zero to 5 V.
 - 2) Minimum Load Resistance: 1000 ohms.
 - 3. Operator Interface:
 - a. Zero and span adjustments within 10 percent of full span.
 - b. Potentiometer adjustments located on face of transmitter.
 - 4. Construction:

- a. Type 300 stainless-steel enclosure.
- b. Swivel fittings for connection to copper tubing or barbed fittings for connection to polyethylene tubing. Fittings on front of instrument enclosure.
- c. Screw terminal block for wire connections.
- d. Vertical plane mounting.
- e. NEMA 250, Type 2.
- f. Mounting Bracket: Appropriate for installation.
- g. Reverse wiring protected.
- h. Calibrate to NIST-traceable standards and provide each transmitter with a certificate of calibration.
- B. Air-Pressure Differential Indicating Transmitter:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 2. Display: Four-digit digital display with minimum 0.4-inch-high numeric characters.
 - 3. Operator Interface:
 - a. Zero and span adjustments.
 - b. Selectable engineering units.
 - 4. Analog Output Current Signal:
 - a. Two-wire, 4- to 20-mA dc current source.
 - b. Signal capable of operating into a 1200-ohm load.
 - 5. Construction:
 - a. Plastic casing with clear plastic cover.
 - b. Integral fittings for plastic tubing connections on side of instrument case for high- and low-pressure connections.
 - c. Terminal block for wire connections.
 - d. Vertical plane mounting.
 - e. NEMA 250, Type 1.
 - f. Nominal 4-inch diameter face.
 - g. Mounting Bracket: Appropriate for installation.

2.4 LIQUID-PRESSURE SWITCHES

- A. Liquid Gage Pressure Switch, Diaphragm Operated, Low Pressure:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Mercoid Controls: Dwyer Instruments, Inc.
 - 1) Dry Indoor Installations: NEMA 250, Type 1.
 - 2) Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
 - 3) Hazardous Environments: Explosion proof.
 - 2. Operating Data:

- a. Electrical Rating: 15 A at 120-V ac.
- b. Pressure Limits:
 - 1) Range 1 to 30 psig: 60 psig.
 - 2) Range 10 to 125 psig: 160 psig.
- c. Temperature Limits: Minus 30 to 150 deg F.
- d. Operating Range: 10 to 250 psig.
- e. Deadband: Fixed.
- 3. Pressure Chamber Material: Stainless steel.
- 4. Diaphragm Material: Nylon or PTFE.
- B. Liquid-Pressure Differential Switch with Set-Point Indicator:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 1) Dry Indoor Installations: NEMA 250, Type 1.
 - 2) Outdoor and Wet Indoor Installations: NEMA 250, Type 4.
 - 3) Hazardous Environments: Explosion proof.
 - b. Operating Data:
 - 1) Electrical Rating: 15 A at 120- to 240-V ac.
 - 2) Pressure Limits: At least 5 times full-scale range, but not less than system design pressure rating.
 - 3) Temperature Limits: Minus 10 to 180 deg F.
 - 4) Operating Range: Approximately 2 times set point.
 - 5) Deadband: Adjustable or fixed as required by application.

2.5 LIQUID-PRESSURE TRANSMITTERS

- A. Liquid-Pressure Differential Transmitter:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Dwyer Instruments, Inc.
 - 2. Analog Output Current Signal:
 - a. Two-wire, 4- to 20-mA dc current source.
 - b. Signal capable of operating into 1000-ohm load.
 - 3. Operator Interface:
 - a. Zero and span adjustments located behind cover.
 - b. Bleed screws on side of body, two screws on low-pressure side, and one screw on highpressure side, for air in line and pressure cavity.
 - 4. Construction:

- a. Aluminum and stainless-steel enclosure with removable cover.
- b. Wetted parts of transmitter constructed of 17-4 PH or 300 Series stainless steel.
- c. Threaded, NPS 1/4 process connections on side of instrument enclosure.
- d. Knock out for 1/2-inch nominal conduit connection on side of instrument enclosure.
- e. Screw terminal block for wire connections.
- f. NEMA 250, Type 4X.
- g. Mounting Bracket: Appropriate for installation.
- 5. Three-valve manifold. Construct manifold of brass, bronze, or stainless steel. Manifold shall have threaded, NPS 1/4 process connections.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install products level, plumb, parallel, and perpendicular with building construction.
- B. Properly support instruments, tubing, piping wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement, sway, or a break in attachment when subjected to a force.
- C. Provide ceiling, floor, roof, wall openings, and sleeves required by installation. Before proceeding with drilling, punching, or cutting, check location first for concealed products that could potentially be damaged. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- D. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not to overstress threads by using excessive force or oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- E. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- F. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they are subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 4. Where instruments are located in a corrosive environment and are not corrosive resistant from the manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.2 ELECTRICAL POWER

A. Furnish and install electrical power to products requiring electrical connections.

- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.3 PRESSURE INSTRUMENT INSTALLATION

- A. Mounting Location:
 - 1. Rough-in: Outline instrument-mounting locations before setting instruments and routing, cable, wiring, tubing, and conduit to final location.
 - 2. Install switches and transmitters for air and liquid pressure associated with individual airhandling units and associated connected ductwork and piping near air-handlings units colocated in air-handling unit system control panel, to provide service personnel a single and convenient location for inspection and service.
 - 3. Install liquid and steam pressure switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 4. Install air-pressure switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
 - 5. Mount switches and transmitters not required to be mounted within system control panels on walls, floor-supported freestanding pipe stands, or floor-supported structural support frames. Use manufacturer mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
 - 6. Install instruments (except pressure gages) in steam, liquid, and liquid-sealed piped services below their process connection point. Slope tubing down to instrument with a slope of 2 percent.
 - 7. Install instruments in dry gas and noncondensable vapor piped services above their process connection point. Slope process connection lines up to instrument with a minimum slope of 2 percent.
- B. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct static pressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
- C. Duct Pressure Sensors:
 - 1. Install sensors using manufacturer's recommended upstream and downstream distances.
 - 2. Unless indicated on Drawings, locate sensors approximately 75 percent of distance of longest hydraulic run. Location of sensors shall be submitted and approved before installation.
 - 3. Install mounting hardware and gaskets to make sensor installation airtight.
 - 4. Route tubing from the sensor to transmitter.
 - 5. Use compression fittings at terminations.
 - 6. Install sensor in accordance with manufacturer's instructions.
 - 7. Support sensor to withstand maximum air velocity, turbulence, and vibration encountered to prevent instrument failure.
- D. Outdoor Pressure Sensors:
 - 1. Install roof-mounted sensor in least-noticeable location and as far away from exterior walls as possible.

- 2. Locate wall-mounted sensor in an inconspicuous location.
- 3. Submit sensor location for approval before installation.
- 4. Verify signal from sensor is stable and consistent to all connected transmitters. Modify installation to achieve proper signal.
- 5. Route outdoor signal pipe full size of sensor connection to transmitters. Install branch connection of size required to match to transmitter.
- 6. Install sensor signal pipe with dirt leg and drain valve below roof penetration.
- 7. Insulate signal pipe with flexible elastomeric insulation as required to prevent condensation.
- 8. Connect roof-mounted signal pipe exposed to outdoors to building grounding system.
- E. Air-Pressure Differential Switches:
 - 1. Install air-pressure sensor in system for each switch connection. Install sensor in an accessible location for inspection and replacement.
 - 2. A single sensor may be used to share a common signal to multiple pressure instruments.
 - 3. Install access door in duct and equipment to access sensors that cannot be inspected and replaced from outside.
 - 4. Route NPS 3/8 tubing from sensor to switch connection.
 - 5. Do not mount switches on rotating equipment.
 - 6. Install switches in a location free from vibration, heat, moisture, or adverse effects, which could damage the switch and hinder accurate operation.
 - 7. Install switches in an easily accessible location serviceable from floor.
 - 8. Install switches adjacent to system control panel if within 50 feet; otherwise, locate switch in vicinity of system connection.
- F. Liquid-Pressure Differential Switches:
 - 1. Where process connections are located in mechanical equipment room, install switch in convenient and accessible location near system control panel.
 - 2. Where process connections are installed outside mechanical rooms, route processing tubing to mechanical room housing system control panel and locate switch near system control panel.
 - 3. Where multiple switches serving same system are installed in same room, install switches by system to provide service personnel a single and convenient location for inspection and service.
 - 4. System process tubing connection shall be full size of switch connection, but not less than NPS 3/4. Install stainless-steel bushing if required to mate switch to system connection.
 - 5. Connect process tubing from point of system connection and extend to switch.
 - 6. Install isolation valves in process tubing as close to system connection as practical.
 - 7. Install dirt leg and drain valve at each switch connection.
 - 8. Do not mount switches on rotating equipment.
 - 9. Install switches in a location free from vibration, heat, moisture, or adverse effects, which could damage the switch and hinder accurate operation.
 - 10. Install switches in an easily accessible location serviceable from floor.
- G. Liquid-Pressure Transmitters:
 - 1. Where process connections are installed in mechanical equipment room, install transmitter in convenient and accessible location near system control panel.
 - 2. Where process connections are installed outside mechanical rooms, route processing tubing to mechanical room housing system control panel and locate transmitter near system control panel.
 - 3. Where multiple transmitters serving same system are installed in same room, install transmitters by system to provide service personnel a single and convenient location for inspection and service.

- 4. System process tubing connection shall be full size of switch connection, but not less than NPS 3/4. Install stainless-steel bushing if required to mate switch to system connection.
- 5. Connect process tubing from point of system connection and extend to transmitter.
- 6. Install isolation valves in process tubing as close to system connection as practical.
- 7. Install dirt leg and drain valve at each transmitter connection.
- 8. Do not mount transmitters on equipment.
- 9. Install in a location free from vibration, heat, moisture, or adverse effects, which could damage and hinder accurate operation.

3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Install engraved phenolic nameplate with instrument identification and on face of ceiling directly below instruments concealed above ceilings.

3.5 CHECKOUT PROCEDURES

- A. Check out installed products before continuity tests, leak tests, and calibration.
- B. Check instruments for proper location and accessibility.
- C. Check instruments for proper installation with respect to direction of flow, elevation, orientation, insertion depth, or other applicable considerations that impact performance.

3.6 DEMONSTRATION

- A. Train Owner's maintenance personnel to adjust, operate, and maintain instrumentation and control devices.
- B. Coordinate pressure instrument demonstration video with operation and maintenance manuals and classroom instruction for use by Owner in operating, maintaining, and troubleshooting.
- C. Record videos on DVD disks.
- D. Owner shall have right to make additional copies of video for internal use without paying royalties.

END OF SECTION 23 09 23.23
SECTION 23 09 23.27 - TEMPERATURE INSTRUMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Air temperature sensors.
 - 2. Air temperature switches.
 - 3. Air temperature RTD transmitters.
 - 4. Liquid and steam temperature sensors.
 - 5. Liquid temperature switches.
- B. Related Requirements:
 - 1. Section 23 09 23 "Direct-Digital Control System for HVAC" for control equipment and software, relays, electrical power devices, uninterruptible power supply units, wire, and cable.
 - 2. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to Section 23 09 23.27.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Include number-coded identification system for unique identification of wiring, cable, and tubing ends.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Environmental Conditions:

- 1. Instruments shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 - a. If instrument alone cannot meet requirement, install instrument in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated and cooled, filtered, and ventilated as required by instrument and application.
- 2. Instruments and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Instrument's installed location shall dictate following NEMA 250 enclosure requirements:
 - a. Outdoors, Protected: Type 3.
 - b. Indoors, Heated and Air Conditioned: Type 1.
 - c. Mechanical Equipment Rooms:
 - 1) Chiller and Boiler Rooms: Type 1.
 - 2) Air-Moving Equipment Rooms: Type 1.

2.2 AIR TEMPERATURE SENSORS

- A. Thermal Resistors (Thermistors): Common Requirements:
 - 1. 10,000 ohms at 25 deg C and a temperature coefficient of 23.5 ohms/ohm/deg C.
 - 2. Two-wire, PTFE-insulated, 22-gage stranded copper leads.
 - 3. Performance Characteristics:
 - a. Range: Minus 50 to 275 deg F.
 - b. Interchangeable Accuracy: At 77 deg F within 0.5 deg F.
 - c. Repeatability: Within 0.5 deg F.
 - d. Drift: Within 0.5 deg F over 10 years.
 - e. Self-Heating: Negligible.
 - 4. Transmitter optional, contingent on compliance with end-to-end control accuracy.
- B. Thermistor, Single-Point Duct Air Temperature Sensors:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 2. Temperature Range: Minus 50 to 275 deg F
 - 3. Probe: Single-point sensor with a stainless-steel sheath.
 - 4. Length: As required by application to achieve tip at midpoint of air tunnel, up to 18 inches.
 - 5. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
 - 6. Gasket for attachment to duct or equipment to seal penetration airtight.
 - 7. Conduit Connection: 1/2- inch trade size.
- C. Thermistor Averaging Air Temperature Sensors:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Minco.
- 2. Temperature Range: Minus 50 to 275 deg F
- 3. Multiple sensors to provide average temperature across entire length of sensor.
- 4. Rigid probe of aluminum, brass, copper, or stainless-steel sheath.
- 5. Flexible probe of aluminum, brass, copper, or stainless-steel sheath and formable to a 4-inch radius.
- 6. Length: As required by application to cover entire cross section of air tunnel.
- 7. Enclosure: Junction box with removable cover; NEMA 250, Type 1 for indoor applications and Type 4 for outdoor applications.
- 8. Gasket for attachment to duct or equipment to seal penetration airtight.
- 9. Conduit Connection: 1/2-inch trade size.
- D. Thermistor Outdoor Air Temperature Sensors:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 2. Temperature Range: Minus 50 to 275 deg F
 - 3. Probe: Single-point sensor with a stainless-steel sheath.
 - 4. Solar Shield: Stainless steel.
 - 5. Enclosure: NEMA 250, Type 4 or 4X junction box or combination conduit and outlet box with removable cover and gasket.
 - 6. Conduit Connection: 1/2-inch trade size.
- E. Thermistor Space Air Temperature Sensors:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Minco.
 - 2. Temperature Range: Minus 50 to 212 deg F
 - 3. Sensor assembly shall include a temperature sensing element mounted under a cover.
 - 4. Provide a mounting plate that is compatible with the surface shape that it is mounted to and electrical box used.
 - 5. Concealed wiring connection.
- F. Space Air Temperature Sensors for Use with DDC Controllers Controlling Terminal Units:
 - 1. 1000 thermistor.
 - 2. Thermistor:
 - a. Pre-aged, burned in, and coated with glass; inserted in a metal sleeve; and entire unit encased in epoxy.
 - b. Thermistor drift shall be less than plus or minus 0.5 deg F over 10 years.
 - 3. Temperature Transmitter Requirements:
 - a. Mating transmitter required with each 100-ohm RTD.

- b. Mating transmitters optional for 1000-ohm RTD and thermistor, contingent on compliance with end-to-end control accuracy.
- 4. Provide digital display of sensed temperature.
- 5. Provide sensor with local control.
 - a. Local override to turn HVAC on.
 - b. Local adjustment of temperature set point.
 - c. Both features shall be capable of manual override through control system operator.

2.3 AIR TEMPERATURE SWITCHES

- A. Thermostat and Switch for Low Temperature Control in Duct Applications:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Honeywell International Inc.
 - b. Siemens Building Technologies, Inc.
 - 2. Performance:
 - a. Operating Temperature Range: 15 to 55 deg F.
 - b. Temperature Differential: 5 deg F, non-adjustable and additive.
 - c. Enclosure Ambient Temperature: Minus 20 to 140 deg F.
 - d. Sensing Element Maximum Temperature: 250 deg F.
 - e. Voltage: 120-V ac.
 - f. Current: 16 FLA.
 - g. Switch Type: Two SPDT snap switches operate on coldest 12-inchsection along element length.
 - 3. Construction:
 - a. Vapor-Filled Sensing Element: Nominal 20 feet long.
 - b. Dual Temperature Scale: Fahrenheit and Celsius visible on face.
 - c. Set-Point Adjustment: Screw.
 - d. Enclosure: Painted metal, NEMA 250, Type 1.
 - e. Electrical Connections: Screw terminals.
 - f. Conduit Connection: 1/2-inch trade size.
- B. Thermostat and Switch for High Temperature Control in Duct Applications:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Schneider Electric USA, Inc.
 - 2. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.
 - 3. Description:
 - a. Two-position control.
 - b. Field-adjustable set point.
 - c. Manual reset.

- d. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. Performance:
 - a. Temperature Range: 100 to 160 deg F.
 - b. Temperature Differential: 5 deg F.
 - c. Ambient Temperature: Zero to 260 deg F.
 - d. Voltage: 120-V ac.
 - e. Current: 16 FLA.
 - f. Switch Type: SPDT snap switch.
- 5. Construction:
 - a. Sensing Element: Helical bimetal.
 - b. Enclosure: Metal, NEMA 250, Type 1.
 - c. Electrical Connections: Screw terminals.
 - d. Conduit Connection: 1/2-inch trade size.

2.4 AIR TEMPERATURE RTD TRANSMITTERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Minco.
- B. Source Limitations: Obtain temperature-measuring sensors and transmitters and airflow from single manufacturer.
- C. House electronics in NEMA 250 enclosure.
 - 1. Duct: Type 1
 - 2. Outdoor: Type 3
 - 3. Space: Type 1.
- D. Conduit Connection: 1/2-inch
- E. Functional Characteristics:
 - 1. Input:
 - a. 100-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, two-wire sensors.
 - b. 1000-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C, two-wire sensors.
 - 2. Span (Adjustable):
 - a. Space: 40 to 90 deg F.
 - b. Supply Air Cooling and Heating: 40 to 120 deg F.
 - c. Supply Air Cooling Only: 40 to 90 deg F.
 - d. Supply Air Heating Only: 40 to 120 deg F.
 - e. Exhaust Air: 50 to 100 deg F.
 - f. Return Air: 50 to 100 deg F.

- g. Mixed Air: Minus 40 to 140 deg F.
- h. Outdoor: Minus 40 to 140 deg F.
- 3. Output: 4- to 20-mA dc, linear with temperature; RFI insensitive; minimum drive load of 600 ohms at 24-V dc .
- 4. Zero and span field adjustments, plus or minus 5 percent of span. Minimum span of 50 deg F.
- 5. Match sensor with temperature transmitter and factory calibrate together.
- F. Performance Characteristics:
 - 1. Calibration Accuracy: Within 0.1 percent of the span.
 - 2. Stability: Within 0.2 percent of the span for at least 6 months.
 - 3. Combined Accuracy: Within 0.5 percent.
- 2.5 LIQUID AND STEAM TEMPERATURE SENSORS, COMMERCIAL GRADE
 - A. RTD:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. MAMAC Systems, Inc.
 - 1) Range: Minus 40 to 210 deg F.
 - 2) Interchangeable Accuracy: Within 0.54 deg F at 32 deg F.
 - B. Thermowells:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. MAMAC Systems, Inc.
 - 2. Stem: Straight shank formed from solid bar stock.
 - 3. Material: Brass.
 - 4. Process Connection: Threaded, NPS 3/4.
 - 5. Sensor Connection: Threaded, NPS 1/2.
 - 6. Bore: Sized to accommodate sensor with tight tolerance between sensor and well.
 - 7. Furnish thermowells installed in insulated pipes and equipment with an extended neck.
 - 8. Length: 4, 6, or 8 inchesas required by application.
 - 9. Thermowells furnished with heat-transfer compound to eliminate air gap between wall of sensor and thermowell and to reduce time constant.

2.6 LIQUID TEMPERATURE SWITCHES

- A. Thermostat and Switch for Temperature Control in Pipe Applications:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Honeywell International Inc.
 - 2. Performance:
 - a. Operating Temperature Range: 65 to 200 deg F.

- b. Temperature Differential Deadband: 5 to 30 deg F, adjustable.
- c. Enclosure Ambient Temperature: 150 deg F.
- d. Sensing Element Pressure Rating: 200 psig.
- e. Voltage: 120-V ac.
- f. Current: 8 FLA.
- g. Switch Type: SPDT snap switch.

3. Construction:

- a. Vapor-Filled Immersion Element: Copper, nominal 3 inches long.
- b. Temperature Scale: Fahrenheit, visible on face.
- c. Set-Point Adjustment: Screw.
- d. Enclosure: Painted metal, NEMA 250, Type 1.
- e. Electrical Connections: Screw terminals.
- f. Conduit Connection: 3/4-inch.

2.7 LIQUID AND STEAM TEMPERATURE TRANSMITTERS, COMMERCIAL GRADE

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Minco.
- B. House electronics in NEMA 250, Type 4X enclosure.
- C. Enclosure Connection: 1/2-inch trade size.
- D. Functional Characteristics:
 - 1. Input: 100-ohm platinum RTD temperature coefficient of 0.00385 ohm/ohm/deg C,
 - 2. Default Span (Adjustable):
 - a. Chilled Water: Zero to 100 deg F.
 - b. Condenser Water: Zero to 120 deg F.
 - c. Heating Hot Water: 32 to 212 deg F.
 - d. Heat Recovery: Zero to 120 deg F.
 - 3. Output: 4- to 20-mA dc, linear with temperature; RFI insensitive; minimum drive load of 600 ohms at 24-V dc.
 - 4. Zero and span field adjustments, plus or minus 5 percent of span. Minimum span of 50 deg F.
 - 5. Match sensor with temperature transmitter and factory calibrate together. Each matched sensor and transmitter set shall include factory calibration data traceable to NIST.
- E. Performance Characteristics:
 - 1. Calibration Accuracy: Within 0.1 percent of the span.
 - 2. Stability: Within 0.2 percent of the span for at least 6 months.
 - 3. Combined Accuracy: Within 0.5 percent.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install products level, plumb, parallel, and perpendicular with building construction.
- B. Properly support instruments, tubing, piping, wiring, and conduit to comply with requirements indicated. Brace all products to prevent lateral movement and sway or a break in attachment when subjected to a < force.
- C. Fastening Hardware:
 - 1. Stillson wrenches, pliers, and other tools that cause injury to or mar surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening nuts.
 - 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
 - 3. Lubricate threads of bolts, nuts, and screws with graphite and oil before assembly.
- D. Install products in locations that are accessible and that permit calibration and maintenance from floor, equipment platforms, or catwalks. Where ladders are required for Owner's access, confirm unrestricted ladder placement is possible under occupied condition.
- E. Corrosive Environments:
 - 1. Use products that are suitable for environment to which they are subjected.
 - 2. If possible, avoid or limit use of materials in corrosive environments.
 - 3. When conduit is in contact with a corrosive environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment.
 - 4. Where instruments are located in a corrosive environment and are not corrosive resistant from manufacturer, field install products in a NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.2 ELECTRIC POWER

- A. Furnish and install electrical power to products requiring electrical connections.
- B. Furnish and install circuit breakers. Comply with requirements in Section 26 28 16 "Enclosed Switches and Circuit Breakers."
- C. Furnish and install power wiring. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Furnish and install raceways. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."

3.3 TEMPERATURE INSTRUMENT INSTALLATIONS

- A. Mounting Location:
 - 1. Roughing In:

- a. Outline instrument mounting locations before setting instruments and routing cable, wiring, tubing, and conduit to final location.
- b. Provide independent inspection to confirm that proposed mounting locations comply with requirements indicated and approved submittals.
 - 1) Indicate dimensioned locations with mounting height for all surface-mounted products on Shop Drawings.
 - 2) Do not begin installation without submittal approval of mounting location.
- c. Complete installation rough-in only after confirmation by independent inspection is complete and approval of location is documented for review by Owner and Architect on request.
- 2. Install switches and transmitters for air and liquid temperature associated with individual airhandling units and associated connected ductwork and piping near air-handling units colocated in air-handling unit system control panel to provide service personnel a single and convenient location for inspection and service.
- 3. Install liquid and steam temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
- 4. Install air temperature switches and transmitters for indoor applications in mechanical equipment rooms. Do not locate in user-occupied space unless indicated specifically on Drawings.
- 5. Mount switches and transmitters on walls, floor-supported freestanding pipe stands, or floorsupported structural support frames. Use manufacturer's mounting brackets to accommodate field mounting. Securely support and brace products to prevent vibration and movement.
- B. Special Mounting Requirements:
 - 1. Protect products installed outdoors from solar radiation, building and wind effect with stand-offs and shields.
 - 2. Temperature instruments having performance impacted by temperature of mounting substrate shall be isolated with an insulating barrier located between instrument and substrate to eliminate effect. Where instruments requiring insulation are located in finished space, conceal insulating barrier in a cover matching the instrument cover.
- C. Mounting Height:
 - 1. Mount temperature instruments in user-occupied space to match mounting height of light switches unless otherwise indicated on Drawings. Mounting height shall comply with codes and accessibility requirements.
 - 2. Mount switches and transmitters located in mechanical equipment rooms and other similar space not subject to code or state and Federal accessibility requirements within a range of 42 to 72 inches above the adjacent floor, grade, or service catwalk or platform.
 - a. Make every effort to mount at 60 inches.
- D. Seal penetrations to ductwork, plenums, and air-moving equipment to comply with duct staticpressure class and leakage and seal classes indicated using neoprene gaskets or grommets.
- E. Space Temperature Sensor Installation:
 - 1. Conceal assembly in an electrical box of sufficient size to house sensor and transmitter, if provided.

- 2. Install electrical box with a faceplate to match sensor cover if sensor cover does not completely cover electrical box.
- 3. In finished areas, recess electrical box within wall.
- 4. In unfinished areas, electrical box may be surface mounted if electrical light switches are surface mounted. Use a cast-aluminum electric box for surface-mounted installations.
- 5. Align electrical box with other electrical devices such as visual alarms and light switches located in the vicinity to provide a neat and well-thought-out arrangement. Where possible, align in both horizontal and vertical axis.
- F. Outdoor Air Temperature Sensor Installation:
 - 1. Mount sensor in a discrete location facing north.
 - 2. Protect installed sensor from solar radiation and other influences that could impact performance.
 - 3. If required to have a transmitter, mount transmitter remote from sensor in an accessible and serviceable location indoors.
- G. Single-Point Duct Temperature Sensor Installation:
 - 1. Install single-point-type, duct-mounted, supply- and return-air temperature sensors. Install sensors in ducts with sensitive portion of the element installed in center of duct cross section and located to sense near average temperature. Do not exceed 24 inches in sensor length.
 - 2. Install return-air sensor in location that senses return-air temperature without influence from outdoor or mixed air.
 - 3. Rigidly support sensor to duct and seal penetration airtight.
 - 4. If required to have transmitter, mount transmitter remote from sensor at accessible and serviceable location.
- H. Averaging Duct Temperature Sensor Installation:
 - 1. Install averaging-type air temperature sensor for temperature sensors located within airhandling units, similar equipment, and large ducts with air tunnel cross-sectional area of 20 sq. ft. and larger.
 - 2. Install sensor length to maintain coverage over entire cross-sectional area. Install multiple sensors where required to maintain the minimum coverage.
 - 3. Fasten and support sensor with manufacturer-furnished clips to keep sensor taut throughout entire length.
 - 4. If required to have transmitter, mount transmitter in an accessible and serviceable location.
- I. Low-Limit Air Temperature Switch Installation:
 - 1. Install multiple low-limit switches to maintain coverage over entire cross-sectional area of air tunnel.
 - 2. Fasten and support sensing element with manufacturer-furnished clips to keep element taut throughout entire length.
 - 3. Mount switches outside of airstream at a location and mounting height to provide easy access for switch set-point adjustment and manual reset.
 - 4. Install on entering side of cooling coil unless otherwise indicated on Drawings.
- J. Liquid Temperature Sensor Installation:
 - 1. Assembly shall include sensor, thermowell
 - 2. For pipe NPS 4 and larger, install sensor and thermowell length to extend into pipe between 50 to 75 percent of pipe cross section.
 - 3. For pipe smaller than NPS 4:

- a. Install reducers to increase pipe size to NPS 4at point of thermowell installation.
- b. For pipe sizes NPS 2-1/2 and NPS 3, thermowell and sensor may be installed at pipe elbow or tee to achieve manufacturer-recommended immersion depth in lieu of increasing pipe size.
- c. Minimum insertion depth shall be 2-1/2 inches.
- 4. Install matching thermowell.
- 5. Fill thermowell with heat-transfer fluid before inserting sensor.
- 6. Tip of spring-loaded sensors shall contact inside of thermowell.
- 7. For insulated piping, install thermowells with extension neck to extend beyond face of insulation.
- 8. Install thermowell in top dead center of horizontal pipe positioned in an accessible location to allow for inspection and replacement. If top dead center location is not possible due to field constraints, install thermowell at location along top half of pipe.
- 9. For applications with transmitters, mount transmitter remote from sensor in an accessible and serviceable location from floor

3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Each piece of wire, cable, and tubing shall have the same designation at each end for operators to determine continuity at points of connection. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Install engraved phenolic nameplate with instrument identification and on face of ceiling directly below instruments concealed above ceilings.

3.5 CLEANING

- A. Remove grease, mastic, adhesives, dust, dirt, stains, fingerprints, labels, and other foreign materials from exposed interior and exterior surfaces.
- B. Wash and shine glazing.
- C. Polish glossy surfaces to a clean shine.

3.6 CHECK-OUT PROCEDURES

- A. Check installed products before continuity tests, leak tests, and calibration.
- B. Check temperature instruments for proper location and accessibility.
- C. Verify sensing element type and proper material.
- D. Verify location and length.
- E. Verify that wiring is correct and secure.

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections[with the assistance of a factory-authorized service representative]:
 - 1. Perform according to manufacturer's written instruction.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Prepare test and inspection reports.

3.8 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions..

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain temperature instruments.

END OF SECTION 23 09 23.27

Copyright 2013 by The American Institute of Architects (AIA)

SECTION 23 09 93.11 - SEQUENCE OF OPERATIONS FOR HVAC DDC

PART 1 - GENERAL

- 1.1 SUMMARY
- A. Section includes control sequences for DDC for HVAC systems, subsystems, and equipment.
- B. Related Requirements:
 - 1. Section 23 09 23 "DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC" for control equipment.

1.2 SEQUENCE OF OPERATION

- A. NOTES
 - 1. All reheat valves to fail in heating mode.
 - 2. All Temperature set points and reset schedules shall be adjustable.
 - 3. Provide independent set points for occupied and unoccupied modes.
- 1.3 AHU-1, 2, 3, 5, 6
- A. AHU-1,2,3,5,6 are provided with chilled water cooling. Provide each AHU with independent occupied/unoccupied schedules.
- B. SUPPLY FAN START/STOP: The supply fan shall be started according to the schedule. If the supply fan status does not match the commanded value, an alarm shall be generated. When the supply fan status indicates the fan started, the control sequence shall be enabled.
- C. RETURN FAN START/STOP: When the supply fan is started a command to the return fan shall be sent. If the return fan status does not match the commanded value, an alarm shall be generated.
- D. STATIC PRESSURE CONTROL: The supply fan shall modulate to maintain the discharge static pressure at set point. The set point shall be as described below with the static pressure sensor located 2/3 of the way down the longest duct run. Set and Reset static pressure set point as follows:
 - 1. Provide Duct Static Pressure Reset:
 - a. If the most open VAV damper is less than 85% (adj.) open, reset the duct static pressure set point down 0.05"W.C. (adj.). The duct static pressure set point shall not be allowed to drop below the minimum duct static pressure set point as defined below.
 - b. If the most open VAV damper is more than 95% (adj.) open, reset the duct static pressure set point up 0.05"W.C. (adj.). The duct static pressure set point shall not be allowed to exceed the maximum duct static pressure set point as defined below.
 - c. Perform resets in no less than 5 minute (adj.) increments, to ensure stable system operation.

- 2. Determining Maximum Duct Static Pressure Set point:
 - a. Drive all VAV boxes to maximum airflow set point (maximum cooling cfm).
 - b. Allow supply fan VFD to modulate (or manually override if necessary) fan speed such that all VAV boxes are satisfied (within 5% of set point) and at least one VAV damper is 90-100% open.
- c. Record duct static pressure this is the maximum duct static pressure set point.
- 3. Determining Minimum Duct Static Pressure Set point:
 - a. Drive all VAV boxes to minimum airflow set point (minimum cooling/heating cfm).
 - b. Allow supply fan VFD to modulate (or manually override if necessary) fan speed such that all VAV boxes are satisfied (within 5% of set point) and at least one VAV damper is 90-100% open.
 - c. Record duct static pressure this is the minimum duct static pressure set point.
- E. RETURN FAN CONTROL: The return fan shall modulate based on the relief plenum pressure. Provide a relief plenum differential pressure sensor. Vary the return fan speed to maintain 0.05" w.c. in this plenum.
- F. RELIEF DAMPER CONTROL: The relief damper shall be controlled independently of the fresh air damper. Control the relief damper to maintain the building static pressure. Provide a building static pressure sensor in corridor of the area served by the AHU. Maintain setpoint of 0.005" W.C. positive pressure. AHU-5: Locate static pressure sensor in Fab Lab 1104 and 1102 and average. Adjust in field.
- G. RECIRCULATION AIR DAMPER: Modulate in sequence with outdoor air damper position.
- H. DISCHARGE AIR CONTROL: The mixed air dampers, shall be used to maintain the discharge air temperature at set point. If the outdoor air temperature exceeds 60°F (adj.), activate the chilled water cooling to maintain the discharge air set point). Maintain the discharge air temperature at 55°F to 70°F based upon the room with the highest cooling percentage.
- I. INTEGRATED DRY BULB ECONOMIZER SWITCHOVER: When the shared outside air temperature is below the switchover set point, the economizer shall be enabled. When the shared outside air temperature rises above the switchover set point plus a differential, the economizer shall be disabled. The switchover set point shall be the return air temperature.
- J. PREHEAT CONTROL: The preheat valve shall modulate to maintain the discharge air temperature at the minimum 50°F temperature at set point.
- K. FRESH AIR CONTROLS: The outdoor air setting (when not in economizer mode) shall modulate to maintain the scheduled minimum fresh air (see AHU schedule). Provide an airflow monitoring station (low velocity) on the minimum fresh air and modulate the fresh air damper to maintain the fresh air set point when not in economizer mode. On fan shut down the outdoor air damper shall close. The outdoor air damper shall fail in a closed position. The outdoor air damper shall remain closed in an unoccupied mode and during warm up. Alarm the DDC system if the fresh air drops below or exceeds the set point by more than 10% for more than 5 minutes.
- L. Keep the outdoor air damper closed in unoccupied times, in warm up periods and cool down periods, unless outdoor air is required per the cooling sequence of operations to cool down or maintain the setback temperature.
- M. AHU SMOKE MODE
 - 1. AHU on an indication of a smoke detector or a fire alarm in the space served by this unit or by the unit smoke detector, the supply fan and return fans shall stop and the outdoor air damper shall close. The smoke dampers in the supply and return ducts

shall also close. Fire alarm relays furnished and wired by Electrical Contractor. The unit smoke detector shall be provided and installed by the Electric Contractor. The smoke dampers throughout the space shall close when the air handler is shut down.

- 2. Wire as necessary to fire alarm control panel for signals required for smoke sensing.
- N. FILTER STATUS
 - 1. A Differential Pressure Sensor across the filter bank and shall alarm the DDC system when filters are dirty.

O. SAFETIES:

- 1. All of the safety devices are manual reset; the device that has tripped must be manually reset before restarting the air handling unit.
- 2. If a temperature low limit sensor (located downstream of the heating coil) senses a temperature below set point the supply fan and return fan shall be shutdown. The low limit set point shall be 45°F (adjustable).
- 3. A low static pressure switch located prior to the return fan senses a suction pressure that is greater than set point the supply fan and return fan shall be shut down. The low limit set point shall be -1.5" w.c. (adjustable).
- 4. If a high static pressure switch located after the supply fan senses a discharge pressure that is greater than set point, the supply fan and return fan shall be shutdown. The high limit set point shall be 4"w.c. (adjustable).

P. SHUTDOWN:

- 1. When the unit is shutdown by either a stop command or system safety the unit shall be set as follows:
 - a. Supply fan shall be off
 - b. Return fan shall be off
 - c. Supply fan VFD shall be commanded to 0%
 - d. Return fan VFD shall be commanded to 0%
 - e. Outside air damper shall close
 - f. Return air damper shall open
 - g. Exhaust air damper shall close
 - h. Preheat valve shall remain in control and maintain low limit temperature sensor above 50°F.
 - i. Cooling shall be deactivated..
 - j. AHU-2: Provide 24 volt signal shall be provided and wired to fire alarm system. A 24Volt signal shall be sent with AHU is on and off when the AHU is shut down. This signal will allow the fire alarm system to close the fire smoke dampers when the AHU is off.

Q. UNOCCUPIED MODE:

- 1. If any 3 zones fed by the AHU are above their Unoccupied set point and economizer cooling is available, enable the AHU to provide cooling until the set point is met. If economizer isn't available, enable the AHU to provide mechanical cooling until the set point is met.
- 2. If any zones fed by the AHU are below their Unoccupied Set point, enable the AHU to operate until the set point is met and then cycle the unit off. Provide a minimum 5 minute run time in both heating and cooling modes.

R. BUILDING WARMUP/COOL DOWN MODE

1. Provide a building warmup mode whenever the outdoor air temperature is below 45°F and coming out of unoccupied mode. Begin the warm up period based on the ASHRAE 90.1 optimum start algorithm. Operate the system as indicated in the "occupied mode" portion of the sequence.

AHU-4

- S. AHU-4 is a packaged HVAC unit with on board controls. It is provided with packaged DX cooling with an integral air cooled condenser. Provide each AHU with independent occupied/unoccupied schedules. Unit will be provided with a BACnet or LON interface for DDC monitoring and input. See packaged HVAC unit spec for further information. T.C. shall be responsible for providing, installing and wiring all field control devices.
- T. SUPPLY FAN START/STOP: The supply fan shall be started according to the schedule. If the supply fan status does not match the commanded value, an alarm shall be generated. When the supply fan status indicates the fan started, the control sequence shall be enabled.
- U. RELIEF FAN START/STOP: When the supply fan is started a command to the relief fan shall be sent. If the return fan status does not match the commanded value, an alarm shall be generated.
- V. STATIC PRESSURE CONTROL: The supply fan shall modulate to maintain the discharge static pressure at set point. The set point shall be as described below with the static pressure sensor located 2/3 of the way down the longest duct run. Set and Reset static pressure set point as follows:
 - 1. Provide Duct Static Pressure Reset:
 - a. If the most open VAV damper is less than 85% (adj.) open, reset the duct static pressure set point down 0.05"W.C. (adj.). The duct static pressure set point shall not be allowed to drop below the minimum duct static pressure set point as defined below.
 - b. If the most open VAV damper is more than 95% (adj.) open, reset the duct static pressure set point up 0.05"W.C. (adj.). The duct static pressure set point shall not be allowed to exceed the maximum duct static pressure set point as defined below.
 - c. Perform resets in no less than 5 minute (adj.) increments, to ensure stable system operation.
 - 2. Determining Maximum Duct Static Pressure Set point:
 - a. Drive all VAV boxes to maximum airflow set point (maximum cooling cfm).
 - b. Allow supply fan VFD to modulate (or manually override if necessary) fan speed such that all VAV boxes are satisfied (within 5% of set point) and at least one VAV damper is 90-100% open.
 - c. Record duct static pressure this is the maximum duct static pressure set point.
 - 3. Determining Minimum Duct Static Pressure Set point:
 - a. Drive all VAV boxes to minimum airflow set point (minimum cooling/heating cfm).
 - b. Allow supply fan VFD to modulate (or manually override if necessary) fan speed such that all VAV boxes are satisfied (within 5% of set point) and at least one VAV damper is 90-100% open.
 - c. Record duct static pressure this is the minimum duct static pressure set point.
- W. RELIEF FAN CONTROL: The relief fan shall modulate based on the space pressure. Provide space pressure sensor. Vary the relief fan speed to maintain 0.005" w.c. in the space.
- X. RECIRCULATION AIR DAMPER: Modulate in sequence with outdoor air damper position.
- Y. DISCHARGE AIR CONTROL: The mixed air dampers, shall be used to maintain the discharge air temperature at set point. If the outdoor air temperature exceeds 60°F (adj.), disable the economizer and activate the DX cooling to maintain the discharge air set point). Maintain the discharge air temperature at 55°F to 70°F based upon the room with the highest cooling percentage.

- Z. INTEGRATED DRY BULB ECONOMIZER SWITCHOVER: When the shared outside air temperature is below the 60°F, the economizer shall be enabled. When the shared outside air temperature rises above 62°F, the economizer shall be disabled.
- AA. PREHEAT CONTROL: The preheat valve shall modulate to maintain the discharge air temperature at the minimum 50°F temperature at set point.
- BB. FRESH AIR CONTROLS: The outdoor air setting (when not in economizer mode) shall modulate to maintain the scheduled minimum fresh air (see AHU schedule). Provide an airflow monitoring station (low velocity) on the minimum fresh air and modulate the fresh air damper to maintain the fresh air set point when not in economizer mode. On fan shut down the outdoor air damper shall close. The outdoor air damper shall fail in a closed position. The outdoor air damper shall remain closed in an unoccupied mode and during warm up. Alarm the DDC system if the fresh air drops below or exceeds the set point by more than 10% for more than 5 minutes.
- CC. Keep the outdoor air damper closed in unoccupied times, in warm up periods and cool down periods, unless outdoor air is required per the cooling sequence of operations to cool down or maintain the setback temperature.
- DD. AHU SMOKE MODE
 - 1. AHU on an indication of a smoke detector or a fire alarm in the space served by this unit or by the unit smoke detector, the supply fan and return fans shall stop and the outdoor air damper shall close. The smoke dampers in the supply and return ducts shall also close. Fire alarm relays furnished and wired by Electrical Contractor. The unit smoke detector shall be provided and installed by the Electric Contractor. The smoke dampers throughout the space shall close when the air handler is shut down.
 - 2. Wire as necessary to fire alarm control panel for signals required for smoke sensing.
- EE. FILTER STATUS
 - 1. A Differential Pressure Sensor across the filter bank and shall alarm the DDC system when filters are dirty.

FF. SAFETIES:

- 1. All of the safety devices are manual reset; the device that has tripped must be manually reset before restarting the air handling unit.
- 2. If a temperature low limit sensor (located downstream of the heating coil) senses a temperature below set point the supply fan and return fan shall be shutdown. The low limit set point shall be 45°F (adjustable).
- 3. A low static pressure switch located prior to the return fan senses a suction pressure that is greater than set point the supply fan and return fan shall be shut down. The low limit set point shall be -1.5" w.c. (adjustable).
- 4. If a high static pressure switch located after the supply fan senses a discharge pressure that is greater than set point, the supply fan and return fan shall be shutdown. The high limit set point shall be 4"w.c. (adjustable).

GG. SHUTDOWN:

- 1. When the unit is shutdown by either a stop command or system safety the unit shall be set as follows:
 - a. Supply fan shall be off
 - b. Return fan shall be off
 - c. Supply fan VFD shall be commanded to 0%
 - d. Return fan VFD shall be commanded to 0%
 - e. Outside air damper shall close
 - f. Return air damper shall open

- g. Exhaust air damper shall close
- h. Preheat valve shall remain in control and maintain low limit temperature sensor above 50°F.
- i. Cooling shall be deactivated.

HH. UNOCCUPIED MODE:

- 1. If any 3 zones fed by the AHU are above their Unoccupied set point and economizer cooling is available, enable the AHU to provide cooling until the set point is met. If economizer isn't available, enable the AHU to provide mechanical cooling until the set point is met.
- 2. If any zones fed by the AHU are below their Unoccupied Set point, enable the AHU to operate until the set point is met and then cycle the unit off. Provide a minimum 5 minute run time in both heating and cooling modes.

II. BUILDING WARMUP/COOL DOWN MODE

- 1. Provide a building warm-up mode whenever the outdoor air temperature is below 45°F and coming out of unoccupied mode. Begin the warm up period based on the ASHRAE 90.1 optimum start algorithm. Operate the system as indicated in the "occupied mode" portion of the sequence.
- 1.4 HVU-1
- A. Note that HVU-1 does not have mechanical cooling.
- B. Provide each HVU with independent occupied/unoccupied schedules.
- C. SUPPLY FAN
 - 1. START/STOP: The supply fan will be started based on occupancy schedule. When the supply fan status indicates the fan started, the control sequence will be enabled. Upon a loss of airflow, the system will attempt to automatically restart until positive status is received.

D. SPEED CONTROL/DISCHARGE AIR CONTROL/CARBON DIOXIDE CONTROL:

- 1. CO2 SENSOR BELOW ALARM POINT:
 - a. When the zone temperature is between the occupied heating and cooling set points (inside of the bias), the unit shall run at minimum CFM (See HVU Schedule for this value) and the reheat valve shall be fully closed.
 - b. On a rise in zone temperature above the cooling set point, activate the economizer if available. Increase (modulate) the CFM to maximum and the reheat valve remains fully closed.
 - c. On a drop in zone temperature the system operates as follows to maintain the zone temperature set point:
 - From 0-50% loop signal: The reheat valve <u>modulates</u> open and the unit fan speed is controlled to provide minimum CFM. Set the maximum discharge air temperature at 90°F.
 - 2) From 50% to 100% loop signal, modulate the unit supply airflow from minimum to the maximum airflow set point as needed to meet the space temperature set point. Once the set point is met, modulate the unit fan speed the damper back to minimum set point as needed to maintain the heating set point.
- 2. CO2 SENSOR ABOVE ALARM POINT:
 - a. When the CO2 sensor has triggered the alarm point, increase the airflow set point (fan speed) beyond minimum until the CO2 level drops below the alarm point, or until the 100% unit airflow limit is achieved. Modulate the fan as

needed to maintain the CO2 set point below the alarm point. Maintain the space temperature set point by modulating the heating valve if needed.

- b. If the CO2 set point is not met in a space at 100% air volume after 15 minutes, modulate the outdoor air on the unit open (up to the fresh air set point value scheduled on the AHU schedule) until the CO2 set point is met.
- c. If the CO2 sensors exceed the alarm set point for more than 1 hour, alarm the DDC system with a trouble alarm.
- d. Once the CO2 set point is met, modulate the damper back to minimum set point as needed to maintain the heating set point.
- E. INTEGRATED DRY BULB ECONOMIZER SWITCHOVER: When the shared outside air temperature is below the switchover set point, the economizer shall be enabled. When the shared outside air temperature rises above the switchover set point plus a differential, the economizer shall be disabled. The switchover set point shall be the return air temperature.
- F. FRESH AIR CONTROLS: The outdoor air setting (when not in economizer mode) shall modulate to maintain the scheduled minimum fresh air (see HVU schedule). Provide an airflow monitoring station (low velocity) on the minimum fresh air and modulate the fresh air damper to maintain the fresh air set point when not in economizer mode, unless CO2 levels increase. On fan shut down the outdoor air damper shall close. The outdoor air damper shall fail in a closed position. The outdoor air damper shall remain closed in an unoccupied mode and during warm up. Alarm the DDC system if the fresh air drops below or exceeds the set point by more than 10%.
- G. Keep the outdoor air damper closed in unoccupied times, in warm up periods and cool down periods, unless outdoor air is required per the cooling sequence of operations to cool down or maintain the setback temperature.
- H. HVU SMOKE MODE
 - 1. HVU on an indication of a smoke detector or a fire alarm in the space served by this unit or by the unit smoke detector, the supply fan shall stop and the outdoor air damper shall close. The smoke dampers in the supply ducts shall also close. Fire alarm relays furnished and wired by Electrical Contractor. The unit smoke detector shall be provided and installed by the Electric Contractor. The smoke dampers throughout the space shall close when the air handler is shut down.
 - 2. Wire as necessary to fire alarm control panel for signals required for smoke sensing.
- I. FILTER STATUS
 - 1. A Differential Pressure Sensor across the filter bank and shall alarm the DDC system when filters are dirty.
- J. SAFETIES:
 - 1. All of the safety devices are manual reset; the device that has tripped must be manually reset before restarting the air handling unit.
 - 2. If a temperature low limit sensor (located downstream of the heating coil) senses a temperature below set point the supply fan and return fan shall be shutdown. The low limit set point shall be 45°F (adjustable).
 - 3. A low static pressure switch located prior to the supply fan senses a suction pressure that is greater than set point the supply fan and return fan shall be shut down. The low limit set point shall be -1" w.c. (adjustable).
 - 4. If a high static pressure switch located after the supply fan senses a discharge pressure that is greater than set point, the supply fan and return fan shall be shutdown. The high limit set point shall be 2"w.c. (adjustable).
- K. SHUTDOWN:

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- 1. When the unit is shutdown by either a stop command or system safety the unit shall be set as follows:
 - a. Supply fan shall be off
 - b. Supply fan VFD shall be commanded to 0%
 - c. Outside air damper shall close
 - d. Return air damper shall open
 - e. Exhaust air damper shall close
 - f. Preheat valve shall remain in control
- L. Unoccupied Mode:
 - 1. If the spaces fed by the HVU are above their Unoccupied cooling set point enable economizer if available. If the spaces fed by the AHU are below their Unoccupied heating set point, enable the AHU fan and heating coil to operate until the set point is met and then cycle the unit off. Provide a minimum 5 minute run time in both heating and cooling modes.
- M. Building Warm-up Mode
 - Provide a building warm-up mode whenever the outdoor air temperature is below 45°F and coming out of unoccupied mode. Begin the warm up period based on the ASHRAE 90.1 optimum start algorithm (*optimum start controls:* controls that are designed to automatically adjust the start time of an HVAC system each day with the intention of bringing the space to desired occupied temperature levels immediately before scheduled occupancy). Operate the system as indicated in the "occupied mode" portion of the sequence.
- N. Relief damper control:
 - 1. When HVU-1 is in economizer mode, open motorized damper on GV-1.
 - 2. Provide space pressure sensor in the gymnasium. If space pressure exceeds 0.005" W.C. relative to outside, modulate the GV-1 relief damper open.

1.5 VAV BOX WITH HOT WATER REHEAT

A. OCCUPIED MODE:

- 1. When the zone temperature is between the occupied heating and cooling set points (inside of the bias), the primary air damper shall be at the minimum CFM and the reheat valve shall be fully closed.
- 2. On a rise in zone temperature above the cooling set point, the primary air damper shall increase the CFM and the reheat valve remains fully closed.
- 3. On a drop in zone temperature the system operates as follows to maintain the zone temperature set point:
 - a. From 0-50% loop signal: The reheat valve <u>modulates</u> open and the damper is controlled to provide a minimum CFM. Set the maximum discharge air temperature at 90°F.
 - b. From 50% to 100% loop signal, modulate the airflow from minimum to the maximum heating airflow set point as needed to meet the space temperature set point. Once the set point is met, modulate the damper back to minimum set point as needed to maintain the heating set point.
- B. UNOCCUPIED (NIGHT SETBACK) MODE: When the air handling unit shuts down, all box controllers are indexed to unoccupied mode.
 - 1. When the zone temperature is between the unoccupied heating and cooling set points (inside of the bias), the primary air damper shall be closed, and the reheat valve shall be fully closed.

- 2. On a rise in zone temperature above the unoccupied cooling set point, Activate the AHU. The primary air damper shall increase the CFM (if available), and the reheat valve remains fully closed. Shut down the AHU after all spaces meet set point.
- 3. On a drop in zone temperature the system operates as follows to maintain the zone temperature set point:
 - a. Activate the AHU. Set the airflow to the maximum heating airflow set point as needed to meet the space temperature set point. Once the set point is met, modulate the damper back to minimum set point as needed to maintain the heating set point. Shut down the AHU after all spaces meet set point.

C. EXHAUST FAN CONTROLS

- 1. Reference the exhaust fan schedule on the drawings. The schedule indicates the control schemes for all exhaust fans. Provide DDC controls where indicated.
- 2. For fans indicating "operate during occupied hours": Provide a schedule for the exhaust fan operation to match owner requirements. Provide a separate schedule for any fans located in the locker room or administration areas that will have different schedules from the classroom wings.
- 3. DDC System shall enable/disable exhaust fans and monitor status with a current sensor where applicable.
- 4. Some exhaust fans are enabled by an independent wall switch or other means.
- D. MAU-1 CONTROLS
 - Reference the Drawing Schedule and Detail on M9.2 for sequence and requirements. T.C. Contractor to wire and install controls for MAU-1 and Grease Fans. See Kitchen hood specification for EMS variable speed kitchen hood MAU and EF system utilizing VFD's and packaged controller.

1.6 BOILERS AND HEATING PUMPS – HYDRONIC HOT WATER SYSTEM OPERATION

- A. Note: Boilers B-1 AND B-2 are load boilers and B-3 is a backup boiler. Hot Water Pumps HWP-1 and HWP-2 are 100% redundant.
- B. Provide a general alarm status connection to each boiler.
- C. Provide each boiler with a motorized isolation valve. DDC system shall control the hot water supply to 150°F leaving water temperature. Vary the hot water loop temperature based on the outdoor air temperature based on the following linear schedule:
 - 1. When the Outdoor air temperature is 35°F or lower, the hot water loop temperature shall be 150°F. These reset points shall be adjustable via the graphical user interface.
 - 2. If the Outdoor air temperapture is 65°F or higher, the hot water loop temperature shall be maintained at 120°F. These reset points shall be adjustable via the graphical user interface.
 - 3. Vary the hot water loop temperature between 120°F and 150°F linearly with the outdoor air temperature between 65°F and 35°F.
- D. Provide an outdoor air lockout temperature for the boiler of 80°F (adj.).
- E. PUMP CONTROL:
 - 1. The lead hot water pumps shall run constantly to satisfy the VAV reheat load.
 - 2. The hot water pumps will be operated on a VFD. Adjust the VFD speed to maintain the differential pressure in the system.
 - 3. The hot water pumps shall operate in a lead/lag manner with the lead pump operation switching every 200 hours of operation. Alarm at the operator workstation on pump (HWP-1, HWP-2), failure.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

F. BOILER CONTROL:

- 1. Operate the boilers in a lead/lag fashion. The boiler with the lowest run time shall activate as the lead boiler. Alternate lead boiler status every 200 hours of operation.
- 2. If the lead boiler fails to fire, start the lag boiler and alarm the DDC system.
- 3. The boiler motorized valve shall be open and prove open via its end switch.
- 4. Prove water flow with pipe mounted flow switch.
- 5. DDC system to enable boilers as needed to maintain the heating loop set point.
- 6. DDC system to control the boiler burner firing rate based on the water temperature set point.
 - a. After the lead boiler reaches 25% fire rate or higher for more than 15 minutes, bring on the lag boiler and operate both boilers in parallel. If the fire rate for each boiler drops below 10% for more than 15 minutes, stage the lag boiler off and operate only a single boiler.
 - b. If two boilers operate simultaneously at 25% each for more than 15 minutes, bring on the third boiler and operate all three boilers in parallel. If the thee boiler operate at a firing rate lower than 10% for more than 15 minutes, shut down the third boiler and resume operation with two boilers.
- 7. Do not close the boiler motorized isolation valve for 5 minutes after the boiler has finished firing to allow for boiler cool down. Coordinate valve open/close with boiler manufacturer. The lead boiler's motorized isolation valve shall ALWAYS be open.
- 8. Boiler safeties will be monitored and the system will report a general alarm condition if a safety is tripped.

1.7 CHILLER CONTROL

- A. Note: The system will be set up with variable primary chilled water flow. The chilled water system is the second stage of cooling for air handling units, with economizer as the first.
- B. CHILLER CONTROL: The chiller will be enabled when the outside air temperature rises above the system enable set point (53°F). When the outside air temperature falls below this set point, the chiller will turn off. When enabled the pump will be commanded on (see below). Once the chiller receives flow status it will, via its internal controls, maintain the chilled water supply temperature at set point.

C. CHILLED WATER PUMP CONTROL:

- 1. When enabled, the pump will start and run continuously.
- 2. The pump VFD's will modulate to maintain the chilled water system's differential pressure set point. If for any reason its status does not match its commanded value an alarm will be generated.
- 3. Monitor the chiller's water flow. If the chiller's flow drops below its minimum flow set point (see chiller schedule for minimum gpm for specified chiller, confirm with chiller manufacturer), modulate the bypass valve open to maintain the minimum flow set point. Flow will be monitored via a venturi flow meter (Gerand or equal).
- D. The chiller shall be capable of receiving a signal from the BMS system that will enable the chiller.
- E. The chiller shall be capable of accepting a 0-10V or 4-20 mA signal from the building management system to reset the chilled water temperature. Reset the chilled water discharge temperature from 42°F to 50°F based on Outdoor air temperature when OAT ranges from 80°F to 55°F and as required to minimize chiller fault problems. The chiller will be provided with a BMS interface. Coordinate with chiller suppler for LON or BACnet interface requirements. Provide a minimum of interface points as listed in the points list. Provide individual alarm

notifications to the operator's workstation for any chiller alarm. Connect to chiller control panel as required and commission interface.

1.8 OCCUPANCY OVERRIDE SWITCH

A. Provide a 3 hour (adj). occupancy override switch on each thermostat. The override switch shall set the corresponding HVAC system to occupied mode.

1.9 GLYCOL FEEDER

A. DDC sensor shall monitor tank glycol levels and alarm when glycol levels get too low.

1.10 WATER HEATER SYSTEM

- A. Connect to the domestic hot water system boiler general alarm contact. Report alarm for water heater.
- B. Provide an aquastat in the domestic hot water storage tank. Alarm if the domestic hot water is out of range (T>145°F,T<110°F)

1.11 KITHEN CARBON MONOXIDE SENSOR

A. A DDC carbon monoxide sensor shall monitor carbon monoixide levels in the kitchen. Provide DDC trending and alarm for high level.

1.12 UNIT HEATERS

A. DDC space temperature sensor shall enable the fan and open the hot water control valve on a call for space heating. A digital hot water return temperature sensor switch will lock out the fan until the hot water return temperature reaches 80°F. The fan shall be disabled and valve shall close once the space heating demand has been satisfied.

1.13 SAWDUST COLLECTION SYSTEM

- A. Install and wire detectors and control interfaces to spark detection control panel for spark detection, abort damper, backflow damper, plug sensor, broken bag detector for sawdust collection system. Wire to control panel as needed. See specification 238500 for further information.
 - 1. When spark detector senses sparks, close abort damper and shut down sawdust collection system.
 - 2. Install per manufacturer's instructions and wiring diagrams.
 - 3. Ground any controls, wiring per NFPA.
- B. POINT LISTS ARE ATTACHED. THE CONTROL POINTS LISTED ARE SCHEMATIC IN NATURE AND ONLY COVER THE MAJOR SYSTEMS.

BEN STEELE MIDDLE SCHOOL BILLINGS PUBLIC SCHOOLS 100% CONSTRUCTION DOCUMENTS

1.14

AHU A	ND HVU					
	Туре	Point Description	Units	Tren d	Alar m	Total- ize
	AI	Discharge Air Temperature	Deg F	Х		
	AI	Discharge Static Pressure	In WC	Х		
	AI	Preheat Temperature	Deg F	Х		
	AI	Minimum Outdoor Air Flow	CFM	Х	Х	
	DI	Supply Fan Status	Off On	Х	Х	Х
	DI	Return Fan Status	Off On	Х	Х	Х
	DO	Supply Fan Command	Off On	Х		
OINTS	DO	Return Fan Command (AHU's Only)	Off On	X		
Ц Ш	AO	Cooling Output (AHU's Only)	%	Х		
AR	AO	Preheat Output	%	Х		
M	AO	Minimum Outdoor Air Damper Position	%	Х		
ARI	AO	Mixed Air Damper Output	%	Х		
H T	BI	Fire Alarm	Status		Х	
AHI	AO	Fan Output	%	Х		
	Software AO	Discharge Air Temperature Set point	Deg F	Х		
	Software AO	Discharge Air Pressure Set point	In WC	Х		
	Software AO	Heating Unoccupied Set point	Deg F	Х		
	Software AO	Cooling Unoccupied Set point (AHUs Only)	Deg F	Х		
	Software AO	Outdoor Air CFM Set point	CFM	Х		
	Software DO	Economizer Enable	Off On	Х		
	Software DO	Preheat Enable	Off On	Х		
	Software DO	Cooling Enable (AHU Only)	Off On	Х		
work Inputs	Software MV	Occupied Schedule Command	Unocc Stby Occ	Х		
	Software DO	Unit Enable Command	Shutdown Ena- ble	Х		
	Software MV	Application Mode	App Mode	Х		
	Software AO	Outside Air Temperature	Deg F	Х		
	Software AO	Zone Temperature	Deg F	Х		
Net	Software AO	Preheat Temperature Set point	Deg F	X		

AHU AND HVU

	Туре	Point Description	Units	Tren	Alar	Total-	
				d	m	ize	
	AI	Return Air Temperature	Deg F	Х			
	AI	Mixed Air Temperature	Deg F	Х			
	AI	Minimum Outdoor Air Flow	CFM	Х	Х		
	AI	Building Static Pressure	In WC	Х	Х		

٦

BEN STEELE MIDDLE SCHOOL BILLINGS PUBLIC SCHOOLS 100% CONSTRUCTION DOCUMENTS

AI	Supply Fan Airflow	CFM	X		
Al	Return Fan Airflow (AHUs Only)	CFM	Х		
AO	VFD Output - Supply Fan	%	Х		
AO	VFD Output - Return Fan (AHUs Only)	%	Х		
AO	Minimum Outdoor Air Damper Position	%	Х		
AO	Mixed Air Damper Output	%	Х		
BI	Fire Alarm	Status		Х	
AO	Fan Output	%	Х		
AO	Exhaust Air Damper Output	%	Х		
AO	Return Damper Output	%	Х		
DO	Heating Coil Low Temperature Limit Alarm	Status		Х	
DO	Low Limit Duct Static Alarm	Status		Х	
DO	High Limit Duct Static Alarm	Status		Х	
Software AO	Building Static Pressure Set point	In WC	Х		

CHILLER PLANT							
	Туре	Point Description	Units	Tren	Alar	Total-	
				d	m	ize	
	AI	Outside Air Temperature	Deg F	Х			
	AI	Chill Water Supply Temp	Deg F	Х			
	AI	Chill Water Return Temp	Deg F	Х			
	AI	System Differential Pressure	in W.C.	Х			
ш	AI	Chiller Flow	GPM	Х			
ARI	BI	Compressor Status (each compressor)	Off On	Х	Х		
Ň	BI	Chiller Status	Off On	Х	Х		
ARI	BI	Chill Water Pump 1 Status	Off On	Х	Х	Х	
Т Т	BO	Chiller Enable	Off On	Х		Х	
٥ ۵	BO	Pump 1 Command	Off On	Х		Х	
I I I	BO	Chiller Pump 1 VFD Speed	%	Х			
8	AO	Chilled Water Bypass Valve	%	Х			
К	AO	Cooling OA Temperature Lockout	Deg F	Х			
	Software AO	Chilled water Supply Temperature Set point	Deg F	Х			
ъ	AO	System Enable	False True	Х			
	Software BO	Chill Water Pump 1 Runtime	Hrs	Х			
work Inputs	Software AO	CWP 1 Maintenance Switch	Off On	Х			
	Software BO	Chiller Runtime	Hrs	Х			
	Software AO	Chiller Maintenance Switch	Off On	Х			
	Software BO	Chiller Alarm	Normal Alarm	Х			
Net	Software BO						

HOT W	HOT WATER BOILER PLANT							
	Туре	Point Description	Units	Trend	Alar m	Total- ize		
	AI	Outside Air Temperature	Deg F	Х				
	AI	B1 Hot Water Supply Temp	Deg F	Х				
	AI	B2 Hot Water Supply Temp	Deg F	Х				
	AI	B3 Hot Water Supply Temp	Deg F	Х				
	AI	Hot Water Return Temp	Deg F	Х				
	AI	System Differential Pressure	in W.C.	Х				
	BI	Boiler 1 Alarm	Normal Alarm	Х	Х			
	BI	Boiler 2 Alarm	Normal Alarm	Х	Х			
	BI	Boiler 3 Alarm	Normal Alarm	Х	Х			
	BI	Hot Water Pump 1 Status	Off On	Х	Х	Х		
	BI	Hot Water Pump 2 Status	Off On	Х	Х	Х		
	BI	Boiler Valve 1 Status	Close Open	Х				
	BI	Boiler Valve 2 Status	Close Open	Х				
လ	BI	Boiler Valve 3 Status	Close Open	Х				
IN	во	Boiler 1 Command	Off On	Х		Х		
Ы	во	Boiler 2 Command	Off On	Х		Х		
ШЖ	во	Boiler 3 Command	Off On	Х		Х		
NAI	во	Pump 1 Command	Off On	Х		Х		
D	во	Pump 2 Command	Off On	Х		Х		
HAI	AO	Hot Water Pump 1 Speed	%	Х				
5	AO	Hot Water Pump 2 Speed	%	Х				
TRO	AO	Boiler 1 Output	%	Х				
NO	AO	Boiler 2 Output	%	Х				
Ŭ	AO	Boiler 3 Output	%	Х				
ЦЩ.	Software AO	Heating OA Temperature Lockout	Deg F	X				
<u>o</u>	Software BO	System Enable	False True	Х				
	Software BO	Hot Water Pump Rotate Now	False True	X				
	Software AO	Hot Water Pump 1 Runtime	Hrs	X				
	Software AO	Hot Water Pump 2 Runtime	Hrs	Х				
	Software BO	HWP 1 Maintenance Switch	Off On	X				
	Software BO	HWP 2 Maintenance Switch	Off On	X				
	Software BO	Boiler Rotate Now	False True	X				
	Software AO	Boiler 1 Runtime	Hrs	X				
Network Inputs	Software AO	Boiler 2 Runtime	Hrs	X				
	Software AO	Boiler 3 Runtime	Hrs	X				
	Software BO	Boiler 1 Maintenance Switch	Off On	X				
	Software BO	Boiler 2 Maintenance Switch	Off On	Х	1			
	Software BO	Boiler 3 Maintenance Switch	Off On	Х	1			
	Software AO	Hot Water Supply Temperature Set point	Deg F	Х				
	Software AO	Differential Pressure Set point	In WC	Х				

VAV B	OXES					
	Туре	Point Description	Units	Trend	Alar m	Total- ize
CONT.	AI	Discharge Air Temperature	Deg F	Х		
	AI	Zone Temp / Warmer Cooler	Deg F	Х		
NA V	AO	Cooling Output	%	Х		
VAV HARDV	AO	Heating Output	%	Х		
	AO	Heating Output	%			
	Software AO	Supply Airflow	CFM	Х		
	Software AO	Damper Output	%	Х		
	Software AO	Supply Airflow Set point	CFM	Х		
	Software BO	Heating Enable	Off On	Х		
Network Inputs	Software AO	Zone Temperature Set point	Deg F	Х		
	Software AO	Effective Cooling Set point	Deg F	Х		
	Software AO	Effective Heating Set point	Deg F	Х		
	Software AO	Low Space Temperature Alarm			Х	
	Software MV	System Mode Command	System Mode	Х		
	Software BO	Unit Enable Command	Shutdown Enable	Х		

END OF SECTION 23 09 93.11

SECTION 23 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipes, tubes, and fittings.
 - 2. Piping specialties.
 - 3. Piping and tubing joining materials.
 - 4. Valves.
 - 5. Pressure regulators.

1.2 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.
- C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For facility natural-gas piping layout. Include plans, piping layout and elevations, sections, and details for fabrication of pipe anchors, hangers, supports for multiple pipes, alignment guides, expansion joints and loops, and attachments of the same to building structure. Detail location of anchors, alignment guides, and expansion joints and loops.

1.4 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 - a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.2 PIPING SPECIALTIES

- A. Appliance Flexible Connectors:
 - 1. Indoor, Fixed-Appliance Flexible Connectors: Comply with ANSI Z21.24.
 - 2. Indoor, Movable-Appliance Flexible Connectors: Comply with ANSI Z21.69.
 - 3. Outdoor, Appliance Flexible Connectors: Comply with ANSI Z21.75.
 - 4. Corrugated stainless-steel tubing with polymer coating.
 - 5. Operating-Pressure Rating: 0.5 psig.
 - 6. End Fittings: Zinc-coated steel.
 - 7. Threaded Ends: Comply with ASME B1.20.1.
 - 8. Maximum Length: 72 inches
- B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- C. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller.

- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.
- D. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. One-Piece, Bronze Ball Valve with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. BrassCraft Manufacturing Co.; a Masco company.
 - c. Conbraco Industries, Inc.
 - d. Lyall, R. W. & Company, Inc.
 - e. Perfection Corporation.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated brass.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Separate packnut with adjustable-stem packing threaded ends.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.

- 8. CWP Rating: 600 psig.
- 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. BrassCraft Manufacturing Co.; a Masco company.
 - c. Conbraco Industries, Inc.
 - d. Lyall, R. W. & Company, Inc.
 - e. Perfection Corporation.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Two-Piece, Regular-Port Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. BrassCraft Manufacturing Co.; a Masco company.
 - c. Conbraco Industries, Inc.
 - d. Lyall, R. W. & Company, Inc.
 - e. Perfection Corporation.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Bronze Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. A.Y. McDonald Mfg. Co.
- b. Lee Brass Company.
- 2. Body: Bronze, complying with ASTM B 584.
- 3. Plug: Bronze.
- 4. Ends: Threaded, socket, as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
- 5. Operator: Square head or lug type with tamperproof feature where indicated.
- 6. Pressure Class: 125 psig.
- 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- G. PE Ball Valves: Comply with ASME B16.40.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Kerotest Manufacturing Corp.
 - b. Lyall, R. W. & Company, Inc.
 - c. Perfection Corporation.
 - 2. Body: PE.
 - 3. Ball: PE.
 - 4. Stem: Acetal.
 - 5. Seats and Seals: Nitrile.
 - 6. Ends: Plain or fusible to match piping.
 - 7. CWP Rating: 80 psig.
 - 8. Operating Temperature: Minus 20 to plus 140 deg F.
 - 9. Operator: Nut or flat head for key operation.
 - 10. Include plastic valve extension.
 - 11. Include tamperproof locking feature for valves where indicated on Drawings.
- H. Valve Boxes:
 - 1. Cast-iron, two-section box.
 - 2. Top section with cover with "GAS" lettering.
 - 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 - 4. Adjustable cast-iron extensions of length required for depth of bury.
 - 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.5 MOTORIZED GAS VALVES

- A. Electrically Operated Valves: Comply with UL 429.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dungs, Karl, Inc.
 - b. Eclipse Innovative Thermal Technologies.
 - c. Goyen Valve Corp.
 - d. Magnatrol Valve Corporation.

- e. Parker Hannifin Corporation.
- f. Watts; a Watts Water Technologies company.
- 2. Pilot operated.
- 3. Body: Brass or aluminum.
- 4. Seats and Disc: Nitrile rubber.
- 5. Springs and Valve Trim: Stainless steel.
- 6. 120-V ac, 60 Hz, Class B, continuous-duty molded coil, and replaceable.
- 7. NEMA ICS 6, Type 4, coil enclosure.
- 8. Normally closed.
- 9. Visual position indicator.

2.6 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Eclipse Innovative Thermal Technologies.
 - d. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
 - e. Invensys.
 - f. Itron Gas.
 - g. Maxitrol Company.
 - h. Richards Industries.
 - 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 - 3. Springs: Zinc-plated steel; interchangeable.
 - 4. Diaphragm Plate: Zinc-plated steel.
 - 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 - 6. Orifice: Aluminum; interchangeable.
 - 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
 - 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 - 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 - 10. Overpressure Protection Device: Factory mounted on pressure regulator.
 - 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 - 12. Maximum Inlet Pressure: 5 psig.
- C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Canadian Meter Company Inc.
- b. Eaton Corporation.
- c. Harper Wyman Co.
- d. Maxitrol Company.
- e. SCP, Inc.
- 2. Body and Diaphragm Case: Die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber.
- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
- 9. Maximum Inlet Pressure: 5 psig.

2.7 DIELECTRIC UNIONS

- A. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Capitol Manufacturing Company.
 - c. Central Plastics Company.
 - d. Hart Industries International, Inc.
 - e. Jomar Valve.
 - f. Matco-Norca.
 - g. Watts; a Watts Water Technologies company.
 - h. Wilkins.
 - i. Zurn Industries, LLC.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.8 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 OUTDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.
 - 1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.
- C. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- D. Install fittings for changes in direction and branch connections.
- E. Install pressure gage downstream from each service regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.2 INDOOR PIPING INSTALLATION

- A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including servicemeter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- Q. Connect branch piping from top or side of horizontal piping.
- R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment.
- S. Do not use natural-gas piping as grounding electrode.
- T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- U. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.
- B. Install underground valves with valve boxes.
- C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.
- D. Install earthquake valves aboveground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.

3.4 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
- F. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
- B. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."
- C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
- D. Install hangers for horizontal, corrugated stainless-steel tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/8: Maximum span, 48 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1/2: Maximum span, 72 inches; minimum rod size, 3/8 inch.
 - 3. NPS 3/4 and Larger: Maximum span, 96 inches; minimum rod size, 3/8 inch.

3.6 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.7 LABELING AND IDENTIFYING

- A. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.8 FIELD QUALITY CONTROL

- A. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.
- B. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 OUTDOOR PIPING SCHEDULE

- A. Underground natural-gas piping shall be the following:
 - 1. Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- B. Aboveground natural-gas piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- C. Branch Piping in Cast-in-Place Concrete to Single Appliance: Annealed-temper copper tube with wrought-copper fittings and brazed joints. Install piping embedded in concrete with no joints in concrete.
- D. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

3.10 INDOOR PIPING SCHEDULE

- A. All low pressure piping 2" and smaller shall be welded or have threaded joints.
- B. All low pressure piping 2 ¹/₂" and greater shall have welded joints.
- C. All medium pressure (5psi) piping of all sizes shall have welded joints.
- D. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
- E. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- F. Underground, below building, piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.
- G. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
- H. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wroughtsteel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.11 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.
- B. Underground: Bronze plug valves.

3.12 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be one of the following:
 - 1. One-piece, bronze ball valve with bronze trim.
 - 2. Two-piece, full-port, bronze ball valves with bronze trim.
 - 3. Bronze plug valve.
- C. Valves in branch piping for single appliance shall be one of the following:

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

- 1.
- One-piece, bronze ball valve with bronze trim. Two-piece, full-port, bronze ball valves with bronze trim. 2.
- 3. Bronze plug valve.

END OF SECTION 23 11 23

SECTION 23 21 13 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes pipe and fitting materials and joining methods for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Makeup-water piping.
 - 4. Condensate-drain piping.
 - 5. Air-vent piping.
 - 6. Safety-valve-inlet and -outlet piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Pressure-seal fittings.
 - 2. Chemical treatment.
- B. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 - 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: at 200 deg F.
 - 2. Chilled-Water Piping: at 200 deg F.
 - 3. Makeup-Water Piping: 80 psig at 150 deg F.
 - 4. Condensate-Drain Piping: 150 deg F.
 - 5. Air-Vent Piping: 200 deg F.
 - 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. Grooved, Mechanical-Joint, Wrought-Copper Fittings: ASME B16.22.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Anvil International; a subsidiary of Mueller Water Products, Inc.
 - b. Star Pipe Products.
 - c. Victaulic Company.
 - 2. Grooved-End Copper Fittings: ASTM B 75, copper tube or ASTM B 584, bronze casting.
 - 3. Grooved-End-Tube Couplings: Rigid pattern unless otherwise indicated; gasketed fitting. Ductile-iron housing with keys matching pipe and fitting grooves, prelubricated EPDM gasket rated for minimum 230 deg F for use with housing, and steel bolts and nuts.
- D. Wrought-Copper Unions: ASME B16.22.
- E. Copper Pressure-Seal-Join Fittings (Acceptable manufacturers: Viega, Nibco):
 - 1. Fittings for NPS 2 and Smaller: Wrought-Copper fitting with EPDM-rubber, O-ring seal in each end. Fittings and valves shall have non-shock working pressure of 200 psi between temperatures of negative 20°F and 250°F.
 - 2. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, Oring seal in each end. Fittings and valves shall have non-shock working pressure of 200 psi between temperatures of negative 20°F and 250°F.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.
- F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- G. Grooved Mechanical-Joint Fittings and Couplings:
 - Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - 2. Couplings: Ductile- or malleable-iron housing and EPDM or nitrile gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.

2.4 PLASTIC PIPE AND FITTINGS

- A. PEX Pipe and Fittings.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Viega LLC: or comparable product by one of the following:
 - a. Rehau
 - b. Viega
 - c. Uponor Wirsbo
 - d. Watts
 - 2. Pipe Material:
 - a. PEX tubing and fittings shall maintain a quality control program in accordance with ISO 9001 or NSF International in the manufacturing plant to assure that the tubing and fittings are continually being produced to the required standard.
 - b. Tubing: Silane cross-linked high density polyethylene as per ASTM F 876/F 877 and CSA B 137.5.
 - c. Tubing includes four layers.
 - 1) First Layer: Cross-linked, high density polyethylene.
 - 2) Second Layer: Adhesive.

- 3) Third Layer: Ethylene vinyl alcohol layer (EVOH oxygen barrier).
- 4) Fourth Layer: Polyethylene, to protect the EVOH layer from damage.
- d. Certified to NSF 14 and 61.
- e. Tubing will have 6 month UV protection.
- 3. Oxygen Barrier: Limit oxygen diffusion through the tube to maximum 0.10 mg per cu, m/day at 104 deg F according to DIN 4726.
- 4. Bronze Fittings: PEX Press Fittings manufactured from UNS C83600 copper alloy, meeting the requirements of ASTM F 877 tested as a system with PEX Barrier tubing.
 - a. PEX Press Sleeve: Manufactured out of a 304 grade or better stainless steel, and have one view hole (loose sleeve) or three view holes (attached sleeve) to ensure proper PEX tubing insertion.
 - b. Attached sleeve fitting will incorporate a tool locator ring that shall be in place while making a proper press connection.
 - c. PEX press connection shall be made with a Viega supplied ratcheting PEX Press hand tool or PEX Press power tool.
- 5. Pressure/Temperature Rating: PEX Barrier High-Density Cross-linked polyethylene tubing shall meet standard grade hydrostatic pressure ratings from Plastic Pipe Institute in accordance with TR-4/03. The following three standard grade ratings are required:
 - a. 200 degF at 80 psi.
 - b. 180 deg F at 100 psi.
 - c. 73.4 deg F at 160 psi.

2.5 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.6 DIELECTRIC FITTINGS

- A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Capitol Manufacturing Company.
 - c. Central Plastics Company.
 - d. Hart Industries International, Inc.
 - e. Jomar Valve.
 - f. Matco-Norca.
 - g. Watts; a Watts Water Technologies company.
 - h. Wilkins.
 - i. Zurn Industries, LLC.
 - 2. Description:
 - a. Standard: ASSE 1079.
 - b. Pressure Rating: 125 psig minimum at 180 deg F.
 - c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 BYPASS CHEMICAL FEEDER

- A. Description: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 - 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Hot-water heating piping, aboveground, NPS 1 and smaller, may be one of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40, Grade B, Type 96 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 - 3. PEX plastic Pipe and fittings
 - 4. Type L, drawn-temper copper tubing, wrought-copper fittings, and pro-press joints.
- B. Hot-water heating piping, aboveground, NPS 1 through NPS 2, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Type L, drawn-temper copper tubing, wrought-copper fittings, and pro-press joints.

- 3. Schedule 40, Grade B, Type 96 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
- C. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 - 3. Type L, drawn-temper copper tubing, wrought-copper fittings, and pro-press joints.
- D. Hot-Water Heating Piping Installed Belowground and within Slabs:Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints.
- E. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 - 3. Type L, drawn-temper copper tubing, wrought-copper fittings, and pro-press joints.
- F. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be any of the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 - 3. Type L, drawn-temper copper tubing, wrought-copper fittings, and pro-press joints.
- G. Chilled-Water Piping Installed Belowground and within Slabs:Type K, annealed-temper copper tubing, wrought-copper fittings, and soldered joints. Use the fewest possible joints. Pro-press fittings will not be accepted.
- H. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- I. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints.
- J. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.
- K. Air-Vent Piping:
 - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 - 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- L. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- P. Install valves according to Section 23 05 23.11 "Globe Valves for HVAC Piping," Section 23 05 23.12 "Ball Valves for HVAC Piping," Section 23 05 23.13 "Butterfly Valves for HVAC Piping," Section 23 05 23.14 "Check Valves for HVAC Piping," and Section 23 05 23.15 "Gate Valves for HVAC Piping."
- Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- S. Install shutoff valve immediately upstream of each dielectric fitting.

- T. Comply with requirements in Section 23 05 16 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.
- U. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for identifying piping.
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 18 "Escutcheons for HVAC Piping."

3.3 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

- A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.
- B. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for seismic restraints.
- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet.
 - 2. NPS 1: Maximum span, 7 feet.
 - 3. NPS 1-1/2: Maximum span, 9 feet.
 - 4. NPS 2: Maximum span, 10 feet.

- 5. NPS 2-1/2: Maximum span, 11 feet.
- 6. NPS 3 and Larger: Maximum span, 12 feet.
- E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.
- G. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- G. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.

- 4. PVC Nonpressure Piping: Join according to ASTM D 2855.
- H. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.
- I. Mechanically Formed, Copper-Tube-Outlet Joints: Use manufacturer-recommended tool and procedure, and brazed joints.

3.6 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.
- C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.
- D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.7 CHEMICAL TREATMENT

- A. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.
- B. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.
- C. Fill systems that have antifreeze or glycol solutions with the following concentrations:
 - 1. Hot-Water Heating Piping: Minimum of 35 percent propylene glycol.
 - 2. Chilled-Water Piping: Minimum of 35 percent propylene glycol.
 - 3. Snowmelt Piping: Minimum of 50 percent propylene glycol.

3.8 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
 - 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 23 21 13

SECTION 23 21 13.13 - UNDERGROUND HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Steel pipes and fittings.
 - 3. Ductile-iron pipe and fittings.
 - 4. Plastic pipe and fittings.
 - 5. Transition fittings.
 - 6. Conduit piping system.
 - 7. Cased piping system.

1.2 PERFORMANCE REQUIREMENTS

- A. Provide components and installation capable of producing hydronic piping systems with the following minimum working-pressure ratings:
 - 1. Chilled-Water Piping: 150 psig at 200 deg F.

1.3 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Conduit piping.
 - 2. Cased piping.
- B. Shop Drawings: For underground hydronic piping. Signed and sealed by a professional engineer.
 - 1. Calculate requirements for expansion compensation for underground piping.
 - 2. Show expansion compensators, offsets, and loops with appropriate materials to allow piping movement in the required locations. Show anchors and guides that restrain piping movement with calculated loads, and show concrete thrust block dimensions.
 - 3. Show pipe sizes, locations, and elevations. Show piping in trench, conduit, and cased pipe with details showing clearances between piping, and show insulation thickness.

1.4 INFORMATIONAL SUBMITTALS

- A. Material Test Reports: For cased piping.
- B. Source quality-control reports.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
 - A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
 - B. Wrought-Copper Fittings: ASME B16.22.
 - C. Wrought-Copper Unions: ASME B16.22.
 - D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
 - E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

2.2 STEEL PIPES AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black with plain ends; type, grade, and wall thickness as indicated in "Piping Application" Article.
- B. Cast-Iron, Threaded Fittings: ASME B16.4; Class 125.
- C. Malleable-Iron, Threaded Fittings: ASME B16.3, Class 150.
- D. Malleable-Iron Unions: ASME B16.39; Class 150.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Class 125; raised ground face, and bolt holes spot faced.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Steel Welding Fittings: ASME B16.9 and ASTM A 234/A 234M, seamless or welded.
 - 1. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

- I. Grooved-End-Pipe Couplings for Galvanized-Steel Piping: AWWA C606 for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gaskets suitable for hot and cold water, and bolts and nuts.
- J. Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.
- K. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and -bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- L. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.3 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151/A21.51, with mechanical-joint bell and plain spigot end.
 - 1. Standard-Pattern, Mechanical-Joint Fittings: AWWA C110/A21.10, ductile or gray iron.
 - 2. Compact-Pattern, Mechanical-Joint Fittings: AWWA C153/A21.53, ductile iron.
 - a. Glands, Gaskets, and Bolts: AWWA C111/A21.11, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.4 CASED PIPING SYSTEM

- A. Description: Factory-fabricated piping with carrier pipe, insulation, and casing.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Insul-Tek Piping Systems, Inc.
 - 2. Perma-Pipe, Inc.
 - 3. Rovanco Piping Systems, Inc.
 - 4. Thermacor Process, L.P.
 - 5. Thermal Pipe Systems.
 - 6. Tricon Piping Systems, Inc.
 - 7. Urecon Ltd.
- C. Carrier Pipe: Plastic pipe and fittings.
- D. Carrier Pipe Insulation:
 - 1. Polyurethane Foam Pipe Insulation: Rigid, cellular, high-pressure injected between carrier pipe and jacket.

- a. Comply with ASTM C 591; thermal conductivity (k-value) shall not exceed 0.14 Btu x in./h x sq. ft. x deg F at 75 deg F after 180 days of aging.
- E. Casing: HDPE 0.034-nch- thick, spiral-wound, lock-seam galvanized steel.
- F. Casing accessories include the following:
 - 1. Joint Kit: Half-shell, pourable or split insulation, casing sleeve, and shrink-wrap sleeve.
 - 2. Expansion Blanket: Elastomeric foam, formed to fit over piping.
 - 3. End Seals: Shrink wrap the casing material to seal watertight around casing and carrier pipe.
- G. Manholes: Black steel with lifting eyes.
 - 1. Finish: Spray-applied urethane, minimum 30 mils thick.
 - 2. Access: 30-inch- diameter waterproof cover with gasket, ladder, and two 6-inch vents, one high and one low, extending above grade with rain caps.
 - 3. Conduit Stub-Outs and Seals: Welded steel with drain and vent openings.
 - 4. Sump: 12 inches in diameter, 12 inches deep.
 - 5. Floatation Anchor: Oversized bottom keyed into concrete base.
- H. Source Quality Control: Factory test the carrier pipe to 150 percent of the operating pressure of system. Furnish test certificates.

PART 3 - EXECUTION

3.1 EARTHWORK

A. See Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING APPLICATION

- A. Chilled-Water Piping:
 - 1. NPS 2 and smaller shall be the following:
 - a. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - b. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
 - 2. NPS 2-1/2 and larger shall be the following:
 - a. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 - b. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 3. Cased piping with polyurethane carrier-pipe insulation.
 - a. Piping Insulation Thickness: 2 inches.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Remove standing water in the bottom of trench.
- C. Do not backfill piping trench until field quality-control testing has been completed and results approved.
- D. Install piping at uniform grade of 0.2 percent. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points and elsewhere as required for system drainage. Install manual air vents at high points.
- E. In conduits, install drain valves at low points and manual air vents at high points.
- F. Install components with pressure rating equal to or greater than system operating pressure.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. See Section 23 05 17 "Sleeves and Sleeve Seals for HVAC Piping" for sleeves and mechanical sleeve seals through exterior building walls.
- J. Secure anchors with concrete thrust blocks. Concrete is specified in Section 03 30 00 "Cast-in-Place Concrete."
- K. See Section 26 42 00 "Cathodic Protection" for cathodic devices and connections to piping and conduit systems.

3.4 JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Ch. 35, "Pipe and Tubing," using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
- 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12M/D10.12.
- H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- I. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
 - 3. PVC Pressure Piping: Join ASTM D 1785 schedule number, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule number PVC pipe and socket fittings according to ASTM D 2855.
- J. Pressure-Sealed Joints: Use manufacturer-recommended tool and procedure. Leave insertion marks on pipe after assembly.
- K. Conduit and Cased Piping Joints: Assemble sections and finish joints with pourable or split insulation and exterior jacket sleeve, and apply shrink-wrap seals.

3.5 IDENTIFICATION

A. Install continuous plastic underground warning tapes during back filling of trenches for underground hydronic piping. Locate tapes 6 to 8 inches below finished grade, directly over piping. See Section 31 20 00 "Earth Work" for warning-tape materials and devices and their installation.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Prepare hydronic piping for testing according to ASME B31.9 and as follows:
 - a. Leave joints, including welds, uninsulated and exposed for examination during test.
 - b. Fill system with water. Where there is risk of freezing, air or a safe, compatible liquid may be used.
 - c. Use vents installed at high points to release trapped air while filling system.
 - 2. Test hydronic piping as follows:
 - a. Subject hydronic piping to hydrostatic test pressure that is not less than 1.5 times the design pressure.
 - After hydrostatic test pressure has been applied for 10 minutes, examine joints for leakage. Remake leaking joints using new materials and repeat hydrostatic test until no leaks exist.
 - 3. Test conduit as follows:

- a. Seal vents and drains and subject conduit to 15 psig for four hours with no loss of pressure. Repair leaks and retest as required.
- B. Prepare test and inspection reports.

END OF SECTION 23 21 13.13

SECTION 23 21 16 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes special-duty valves and specialties for the following:
 - 1. Hot-water heating piping.
 - 2. Chilled-water piping.
 - 3. Condenser-water piping.
 - 4. Makeup-water piping.
 - 5. Condensate-drain piping.
 - 6. Blowdown-drain piping.
 - 7. Air-vent piping.
 - 8. Safety-valve-inlet and -outlet piping.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibratedorifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: 125 psig at 200 deg F.
 - 2. Chilled-Water Piping: 125 psig at 200 deg F.
 - 3. Condenser-Water Piping: 125 psig at 150 deg F.

- 4. Makeup-Water Piping: 80 psig at 150 deg F.
- 5. Condensate-Drain Piping: 150 deg F.
- 6. Blowdown-Drain Piping: 200 deg F.
- 7. Air-Vent Piping: 200 deg F.
- 8. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 23 05 23.11 "Globe Valves for HVAC Piping," Section 23 05 23.12 "Ball Valves for HVAC Piping," Section 23 05 23.13 "Butterfly Valves for HVAC Piping," Section 23 05 23.14 "Check Valves for HVAC Piping," and Section 23 05 23.15 "Gate Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 23 09 23.11 "Control Valves "Section 15901 "Control Valves."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett; a Xylem brand.
 - c. Flow Design, Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. HCI; Hydronics Components Inc.
 - g. Nexus Valve, Inc.
 - h. NuTech Hydronic Specialty Products.
 - i. Oventrop Corporation.
 - j. Taco.
 - k. Tour & Andersson; available through Victaulic Company.
 - I. Tunstall Corporation.
 - m. Victaulic Company.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig (860 kPa).
 - 10. Maximum Operating Temperature: 250 deg F (121 deg C).
- D. Diaphragm-Operated, Pressure-Reducing Valves: ASME labeled.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; a Xylem brand.

- d. Conbraco Industries, Inc.
- e. Spence Engineering Company, Inc.
- f. Watts; a Watts Water Technologies company.
- 2. Body: Bronze or brass.
- 3. Disc: Glass and carbon-filled PTFE.
- 4. Seat: Brass.
- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Low inlet-pressure check valve.
- 8. Inlet Strainer: removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- E. Diaphragm-Operated Safety Valves: ASME labeled.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. Conbraco Industries, Inc.
 - e. Spence Engineering Company, Inc.
 - f. Watts; a Watts Water Technologies company.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Wetted, Internal Work Parts: Brass and rubber.
 - 8. Inlet Strainer: removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- F. Automatic Flow-Control Valves:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flow Design, Inc.
 - b. Flowcon Americas LLC.
 - c. Griswold Controls.
 - d. HCI; Hydronics Components Inc.
 - e. Nexus Valve, Inc.
 - f. NuTech Hydronic Specialty Products.
 - g. Tunstall Corporation.
 - 2. Body: Brass or ferrous metal.
 - 3. Piston and Spring Assembly: Stainless steel, tamper proof, self-cleaning, and removable.
 - 4. Combination Assemblies: Include bonze or brass-alloy ball valve.

- 5. Identification Tag: Marked with zone identification, valve number, and flow rate.
- 6. Size: Same as pipe in which installed.
- 7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
- 8. Minimum CWP Rating: 175 psig.
- 9. Maximum Operating Temperature: 200 deg F.

2.3 AIR-CONTROL DEVICES

- A. Manual Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. Nexus Valve, Inc.
 - e. NuTech Hydronic Specialty Products.
 - f. Taco, Inc.
 - 2. Body: Bronze.
 - 3. Internal Parts: Nonferrous.
 - 4. Operator: Screwdriver or thumbscrew.
 - 5. Inlet Connection: NPS 1/2 (DN 15).
 - 6. Discharge Connection: NPS 1/8 (DN 6).
 - 7. CWP Rating: 150 psig (1035 kPa).
 - 8. Maximum Operating Temperature: 225 deg F (107 deg C).
- B. Expansion Tanks:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. Taco, Inc.
 - 2. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature, with taps in bottom of tank for tank fitting and taps in end of tank for gage glass. Tanks shall be factory tested after taps are fabricated and shall be labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - Air-Control Tank Fitting: Cast-iron body, copper-plated tube, brass vent tube plug, and stainless-steel ball check, 100-gal. (379-L) unit only; sized for compression-tank diameter. Provide tank fittings for 125-psig (860-kPa) working pressure and 250 deg F (121 deg C) maximum operating temperature.
 - 4. Tank Drain Fitting: Brass body, nonferrous internal parts; 125-psig (860-kPa) working pressure and 240 deg F (116 deg C) maximum operating temperature; constructed to admit air to compression tank, drain water, and close off system.
 - 5. Gage Glass: Full height with dual manual shutoff valves, 3/4-inch-diameter gage glass, and slotted-metal glass guard.
- C. In-Line Air Separators:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Armstrong Products, Inc.
 - c. Bell & Gossett; a Xylem brand.
 - d. Taco, Inc.
- 2. Tank: One-piece cast iron with an integral weir constructed to decelerate system flow to maximize air separation.
- 3. Maximum Working Pressure: Up to 175 psig (1207 kPa).
- 4. Maximum Operating Temperature: Up to 300 deg F (149 deg C).

2.4 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
 - 3. Strainer Screen: Stainless-steel, 40-mesh strainer, or perforated stainless-steel basket.
 - 4. CWP Rating: 125 psig (860 kPa).
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch (20-mm) misalignment.
 - 4. CWP Rating: 150 psig (1035 kPa).
 - 5. Maximum Operating Temperature: 250 deg F (121 deg C).
- C. Expansion Fittings: Comply with requirements in Section 23 05 16 "Expansion Fittings and Loops for HVAC Piping." Section 15124 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install throttling-duty valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- C. Install in-line air separators in pump suction. Install drain valve on air separators NPS 2 (DN 50) and larger.
- D. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
- E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.

END OF SECTION 23 21 16

SECTION 23 21 23 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Close-coupled, in-line centrifugal pumps.
 - 2. Separately coupled, base-mounted, end-suction centrifugal pumps.
 - 3. Automatic condensate pump units.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of pump.
- B. Shop Drawings: For each pump.
 - 1. Show pump layout and connections.
 - 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 - 3. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Armstrong Pumps, Inc.
 - 2. Bell and Gossett
 - 3. Grundfos Pumps Corporation.
 - 4. TACO Incorporated.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, close-coupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded union-end connections.

- 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
- 3. Pump Shaft: Steel, with copper-alloy shaft sleeve.
- 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
- 5. Seal: Packing seal consisting of stuffing box with a minimum of four rings of graphiteimpregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.
- 6. Pump Bearings: Permanently lubricated ball bearings.
- D. Motor: Single speed and rigidly mounted to pump casing.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Totally enclosed, fan cooled.
 - b. Enclosure Materials: Cast iron.
 - c. Motor Bearings: Permanently lubricated ball bearings.
 - d. Efficiency: Premium efficient.
- E. Capacities and Characteristics:
 - 1. See Schedule.

2.2 SEPARATELY COUPLED, VERTICALLY MOUNTED, IN-LINE CENTRIFUGAL PUMPS

- 1. Armstrong Pumps, Inc.
- 2. Bell and Gossett
- 3. Grundfos Pumps Corporation.
- 4. TACO Incorporated.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, inline pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted vertically.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded companion-flange connections.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For pumps not frequency-drive controlled, trim impeller to match specified performance.
 - 3. Pump Shaft: Stainless steel.
 - 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket. Include water slinger on shaft between motor and seal.
 - 5. Pump Bearings: Permanently lubricated ball bearings.
- D. Shaft Coupling: Axially split spacer coupling.

- E. Motor: Single speed and rigidly mounted to pump casing with lifting eyebolt and supporting lugs in motor enclosure.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Open, dripproof.
 - b. Enclosure Materials: Cast iron.
 - c. Motor Bearings: Grease-lubricated ball bearings.
 - d. Efficiency: Premium efficient.
- F. Capacities and Characteristics:
 - a. See Schedule on drawings.

2.3 SEPARATELY COUPLED, BASE-MOUNTED, END-SUCTION CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Armstrong Pumps, Inc.
 - 2. Bell and Gossett
 - 3. Grundfos Pumps Corporation.
 - 4. TACO Incorporated.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, endsuction pump as defined in HI 1.1-1.2 and HI 1.3; designed for base mounting, with pump and motor shafts horizontal.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, drain plug at bottom and air vent at top of volute, and flanged connections. Provide integral mount on volute to support the casing, and provide attached piping to allow removal and replacement of impeller without disconnecting piping or requiring the realignment of pump and motor shaft.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For pumps not frequency-drive controlled, trim impeller to match specified performance.
 - 3. Pump Shaft: Stainless steel.
 - 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and EPT bellows and gasket.
 - 5. Seal: Packing seal consisting of stuffing box with a minimum of four rings of graphiteimpregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.
 - 6. Pump Bearings: Grease-lubricated ball bearings in cast-iron housing with grease fittings.
- D. Shaft Coupling: Molded-rubber insert and interlocking spider capable of absorbing vibration. EPDM coupling sleeve for variable-speed applications.

- E. Coupling Guard: Dual rated; ANSI B15.1, Section 8; OSHA 1910.219 approved; steel; removable; attached to mounting frame.
- F. Mounting Frame: Welded-steel frame and cross members, factory fabricated from ASTM A 36/A 36M channels and angles. Fabricate to mount pump casing, coupling guard, and motor.
- G. Motor: Single speed, secured to mounting frame, with adjustable alignment.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Totally enclosed, fan cooled.
 - b. Enclosure Materials: Cast iron.
 - c. Motor Bearings: Permanently lubricated ball bearings.
 - d. Efficiency: Premium efficient.
- H. Capacities and Characteristics:
 - 1. See Schedule.

2.4 AUTOMATIC CONDENSATE PUMP UNITS

- A. Units in this article are complete with pump, basin, and controls and have limited applications and small capacity.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Beckett Corporation.
 - 2. Hartell Pumps; Milton Roy.
 - 3. Little Giant Pump Co.
 - 4. Mepco, LLC.
- C. Description: Packaged units with corrosion-resistant pump, plastic tank with cover, and automatic controls. Include factory- or field-installed check valve and a 72-inch- minimum, electrical power cord with plug.
- D. Capacities and Characteristics:
 - 1. See Schedule.

2.5 PUMP SPECIALTY FITTINGS

- A. Suction Diffuser:
 - 1. Angle pattern.
 - 2. 175-psig pressure rating, cast or ductile-iron body and end cap, pump-inlet fitting.
 - 3. Bronze startup and bronze or stainless-steel permanent strainers.
 - 4. Bronze or stainless-steel straightening vanes.
 - 5. Drain plug.
- 6. Factory-fabricated support.
- B. Triple-Duty Valve:
 - 1. Angle or straight pattern.
 - 2. 175-psig pressure rating, cast or ductile-iron body, pump-discharge fitting.
 - 3. Drain plug and bronze-fitted shutoff, balancing, and check valve features.
 - 4. Brass gage ports with integral check valve and orifice for flow measurement.

PART 3 - EXECUTION

3.1 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Automatic Condensate Pump Units: Install units for collecting condensate and extend to open drain.
- E. Equipment Mounting:
 - 1. Install base-mounted pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 - 3. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- F. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and spring hangers of size required to support weight of in-line pumps.
 - 1. Comply with requirements for hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

3.2 ALIGNMENT

- A. Perform alignment service.
- B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.
- C. Comply with pump and coupling manufacturers' written instructions.

D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.3 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to pump, allow space for service and maintenance.
- C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- E. Install triple-duty valve on discharge side of pumps.
- F. Install suction diffuser and shutoff valve on suction side of pumps.
- G. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- H. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.
- I. Install check valve and gate or ball valve on each condensate pump unit discharge.
- J. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- K. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 23 21 23

SECTION 23 25 00 - HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes the following HVAC water-treatment systems:
 - 1. Manual and automatic chemical-feed equipment and controls.
 - 2. Chemical treatment test equipment.
 - 3. Chemicals.

1.2 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for each type of product.

1.3 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- 1.4 CLOSEOUT SUBMITTALS
 - A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ampion Corp.
 - 2. Anderson Chemical Company.
 - 3. Aqua-Chem, Inc.
 - 4. Barclay Water Management, Inc.
 - 5. Boland Trane Services.
 - 6. Cascade Water Services, Inc.
 - 7. Earthwise Environmental Inc.
 - 8. GE Betz.
 - 9. GE Osmonics.
 - 10. General Electric Company; GE Water & Process Technologies.
 - 11. H-O-H Water Technology, Inc.
 - 12. Metro Group, Inc. (The).
 - 13. Nalco; an Ecolab company.
 - 14. Sonitec-Vortisand inc.

- 15. Watcon, Inc.
- 16. Water Services Inc.

2.2 PERFORMANCE REQUIREMENTS

- A. Closed hydronic systems shall have the following water qualities:
 - 1. pH: Maintain a value within 9.0 to 10.5.
 - 2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
 - 3. Boron: Maintain a value within 100 to 200 ppm.
 - 4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
 - 5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
 - 6. TSS: Maintain a maximum value of 10 ppm.
 - 7. Ammonia: Maintain a maximum value of 20 ppm.
 - 8. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
 - 9. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 - c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 - d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 - e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.
- B. Passivation for Galvanized Steel: For the first 60 days of operation.
 - 1. pH: Maintain a value within 7 to 8.
 - 2. Calcium Carbonate Hardness: Maintain a value within 100 to 300 ppm.
 - 3. Calcium Carbonate Alkalinity: Maintain a value within 100 to 300 ppm.

2.3 AUTOMATIC CHEMICAL-FEED EQUIPMENT

- A. Chemical Solution Tanks:
 - 1. Chemical-resistant reservoirs fabricated from high-density opaque polyethylene with minimum 110 percent containment vessel.
 - 2. Molded cover with recess for mounting pump.
 - 3. Capacity: 50 gal..
- B. Chemical Solution Injection Pumps:
 - 1. Self-priming, positive displacement; rated for intended chemical with minimum 25 percent safety factor for design pressure and temperature.
 - 2. Adjustable flow rate.
 - 3. Metal and thermoplastic construction.
 - 4. Built-in relief valve.
 - 5. Fully enclosed, continuous-duty, single-phase motor. Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- C. Chemical Solution Tubing: Polyethylene tubing with compression fittings and joints except ASTM A 269, Type 304, stainless steel for steam boiler injection assemblies.
- D. Injection Assembly:
 - 1. Quill: Minimum NPS 1/2 with insertion length sufficient to discharge into at least 25 percent of pipe diameter.
 - 2. Ball Valve: Two-piece stainless steel
 - 3. Packing Gland: Mechanical seal on quill of sufficient length to allow quill removal during system operation.
 - 4. Assembly Pressure/Temperature Rating: Minimum 600 psig at 200 deg F.

2.4 CHEMICALS

- A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.
- B. Water Softener Chemicals:
 - 1. Mineral: High-capacity, sulfonated-polystyrene ion-exchange resin that is stable over entire pH range with good resistance to bead fracture from attrition or shock. Resin exchange capacity minimum 30,000 grains/cu. ft. of calcium carbonate of resin when regenerated with 15 lb of salt.
 - 2. Salt for Brine Tanks: High-purity sodium chloride, free of dirt and foreign material. Rock and granulated forms are unacceptable.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install chemical application equipment on concrete bases level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.
- B. Install interconnecting control wiring for chemical treatment controls and sensors.
- C. Mount sensors and injectors in piping circuits.
- D. Bypass Feeders: Install in closed hydronic systems, including and equipped with the following:
 - 1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 - 2. Install water meter in makeup-water supply.
 - 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.

- 4. Install a gate or full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
- 5. Install a swing check on inlet after the isolation valve.
- E. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- F. Where installing piping adjacent to equipment, allow space for service and maintenance.
- G. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Dielectric fittings are specified in Section 23 21 13 "Hydronic Piping."
- H. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 23 05 23.11 "Globe Valves for HVAC Piping," Section 23 05 23.12 "Ball Valves for HVAC Piping," Section 23 05 23.13 "Butterfly Valves for HVAC Piping," and Section 23 05 23.15 "Gate Valves for HVAC Piping."
- I. See Section 22 11 19 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.
- J. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.
- K. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- L. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC system's startup procedures.
 - 4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
 - 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
 - 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
 - 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- B. Equipment will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 23 25 00

SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Rectangular ducts and fittings.
 - 2. Round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealants and gaskets.
 - 5. Hangers and supports.
- B. Related Sections:
 - 1. Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 23 33 00 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible"
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.

- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
- 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.
- C. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ductmate Industries, Inc.
 - b. Lewis and Lambert.
 - c. Lindab Inc.
 - d. McGill AirFlow LLC.
 - e. SEMCO Incorporated.
 - f. Sheet Metal Connectors, Inc.
 - g. Spiral Tech.
 - h. Spiral Manufacturing Co., Inc.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:

- 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
- 2. Tape Width: 4 inches.
- 3. Sealant: Modified styrene acrylic.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 7. Service: Indoor and outdoor.
- 8. Service Temperature: Minus 40 to plus 200 deg F.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
- 10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- 11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- F. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.5 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- H. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

- A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
- B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings. Locate access panel on top or sides of duct a minimum of 1-1/2 inches from bottom of duct.
- C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":

- 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- 2. Outdoor, Supply-Air Ducts: Seal Class A.
- 3. Outdoor, Exhaust Ducts: Seal Class C.
- 4. Outdoor, Return-Air Ducts: Seal Class C.
- 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
- 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
- 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
- 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
- 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
- 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
- 11. Conditioned Space, Exhaust Ducts: Seal Class B.
- 12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 23 33 00 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
 - 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.8 START UP

A. Air Balance: Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
 - 1. Underground Ducts: Concrete-encased, PVC-coated, galvanized sheet steel with thicker coating on duct exterior.
- B. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units and Terminal Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 3-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- C. Return Ducts:
 - 1. Ducts Connected to Fan Coil Units, and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
 - 2. Ducts Connected to Air-Handling Units:

- a. Pressure Class: Positive or negative 2-inch wg.
- b. Minimum SMACNA Seal Class: A.
- c. SMACNA Leakage Class for Rectangular: 6.
- d. SMACNA Leakage Class for Round and Flat Oval: 6.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- D. Exhaust Ducts:
 - 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Exposed to View: Type 304, stainless-steel sheet, No. 4 finish.
 - b. Concealed: Type 304, stainless-steel sheet, No. 2D finish.
 - c. Welded seams and joints.
 - d. Pressure Class: Positive or negative 2-inch wg.
 - e. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - f. SMACNA Leakage Class: 3.
 - 4. Ducts Connected to Dishwasher Hoods:
 - a. Type 304, stainless-steel sheet.
 - b. Exposed to View: No. 4 finish.
 - c. Concealed: No. 2D finish.
 - d. Welded seams and flanged joints with watertight EPDM gaskets.
 - e. Pressure Class: Positive or negative 2-inch wg.
 - f. Minimum SMACNA Seal Class: Welded seams, joints, and penetrations.
 - g. SMACNA Leakage Class: 3.
 - 5. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.

- E. Outdoor-Air Ducts:
 - 1. Ducts Connected to Fan Coil Units and Terminal Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 6.
 - 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 6.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
 - 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 3.
 - d. SMACNA Leakage Class for Round and Flat Oval: 3.
- F. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. PVC-Coated Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Galvanized.
 - 3. Stainless-Steel Ducts:
 - a. Exposed to Airstream: Match duct material.
 - b. Not Exposed to Airstream: Galvanized.
 - 4. Aluminum Ducts: Aluminum.
- G. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.

- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.
- H. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.

c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13

SECTION 23 33 00 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Backdraft and pressure relief dampers.
 - 2. Manual volume dampers.
 - 3. Control dampers.
 - 4. Fire dampers.
 - 5. Smoke dampers.
 - 6. Flange connectors.
 - 7. Turning vanes.
 - 8. Duct-mounted access doors.
 - 9. Flexible connectors.
 - 10. Flexible ducts.
 - 11. Duct accessory hardware.
- B. Related Requirements:
 - 1. Section 23 37 23 "HVAC Gravity Ventilators" for roof-mounted ventilator caps.
 - 2. Section 28 31 11 "Digital, Addressable Voice Evacuation Fire-Alarm System" for duct-mounted fire and smoke detectors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.
 - d. Fire-damper and smoke-damper installations, including sleeves; and duct-mounted access doors.
 - e. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.
- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

- A. Copy this article and re-edit for each type of backdraft and pressure relief damper.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a Mestek Architectural Group company.
 - 2. Cesco Products; a divsion of MESTEK, Inc.
 - 3. Greenheck Fan Corporation.
 - 4. Hercules
 - 5. Nailor Industries Inc.
 - 6. NCA Manufacturing, Inc.
 - 7. Pottorff.
 - 8. Ruskin Company.
- C. Description: Gravity balanced.
- D. Maximum Air Velocity: 1250 fpm.

- E. Maximum System Pressure: 3-inch wg.
- F. Frame: Hat-shaped, 0.05-inch- thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.
- G. Blades: Multiple single-piece blades, center pivoted, maximum 6-inch width, 0.025-inch- thick, rollformed aluminum with sealed edges.
- H. Blade Action: Parallel.
- I. Blade Seals: Neoprene, mechanically locked.
- J. Blade Axles:
 - 1. Material: Galvanized steel or Aluminum.
 - 2. Diameter: 0.20 inch.
- K. Tie Bars and Brackets: Aluminum.
- L. Return Spring: Adjustable tension.
- M. Bearings: Steel ball.
- N. Accessories:
 - 1. Adjustment device to permit setting for varying differential static pressure.
 - 2. Counterweights and spring-assist kits for vertical airflow installations.
 - 3. Electric actuators.
 - 4. Chain pulls.
 - 5. Screen Mounting: Front mounted in sleeve.
 - a. Sleeve Thickness: 20 gage minimum.
 - b. Sleeve Length: 6 inches minimum.
 - 6. Screen Mounting: Rear mounted.
 - 7. Screen Material: Galvanized steel or Aluminum.
 - 8. Screen Type: Bird.
 - 9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Aire Technologies.
 - b. American Warming and Ventilating; a Mestek Architectural Group company.
 - c. Flexmaster U.S.A., Inc.
 - d. Flex-Tek Group.
 - e. McGill AirFlow LLC.
 - f. Nailor Industries Inc.
 - g. Pottorff.

- h. Ruskin Company.
- 2. Standard leakage rating, with linkage outside airstream.
- 3. Suitable for horizontal or vertical applications.
- 4. Dampers for low pressure rectangular ductwork
 - a. In ducts 12" in the larger dimension:
 - 1) Frames:
 - a) Frame: Hat-shaped, 0.064-inch- thick (16 gauge), galvanized sheet steel.
 - b) Mitered and welded corners.
 - c) Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 2) Blades:
 - a) Single blade.
 - b) Galvanized-steel, 0.036 inch (20 gauge) thick.
 - b. In ducts over 12" in the larger dimension:
 - 1) Frames:
 - a) Frame: Hat-shaped, 0.064-inch- thick (16 gauge), galvanized sheet steel.
 - b) Mitered and welded corners.
 - c) Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 2) Blades:
 - a) Multiple blade.
 - b) Opposed-blade design.
 - c) Galvanized-steel, 0.064 inch thick (16 gauge).
- 5. Dampers for low pressure round ductwork
 - a. In ducts 4"-12" in diameter:
 - 1) Frames:
 - a) Frame: Steel channel frame , 0.036-inch-thick (20 gauge), galvanized sheet steel.
 - b) Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 2) Blades:
 - a) Single blade.
 - b) Galvanized-steel, 0.028 inch (22 gauge) thick.
 - b. In ducts 13"-18" in the larger dimension :
 - 1) Frames:
 - a) Frame: Steel channel frame , 0.036-inch-thick (20 gauge), galvanized sheet steel.

- b) Flanges for attaching to walls and flangeless frames for installing in ducts.
- 2) Blades:
 - a) Single blade.
 - b) Galvanized-steel, 0.036 inch (20 gauge) thick.
- c. In ducts 19"-24" in the larger dimension :
 - 1) Frames:
 - a) Frame: Steel channel frame , 0.048-inch-thick (18 gauge), galvanized sheet steel.
 - b) Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 2) Blades:
 - a) Single blade.
 - b) Galvanized-steel, 0.064 inch (16 gauge) thick.
- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. American Warming and Ventilating; a Mestek Architectural Group company.
 - b. McGill AirFlow LLC.
 - c. Nailor Industries Inc.
 - d. Pottorff.
 - e. Ruskin Company.
 - f. Trox USA Inc.
 - g. Vent Products Co., Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.

- 6. Blade Axles: Galvanized steel.
- 7. Bearings:
 - a. Stainless-steel sleeve.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Aluminum.
- C. Jackshaft:
 - 1. Size: 0.5-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multipledamper assembly.
- D. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

- A. Retain this article if motorized volume-control dampers are not specified in Section 23 09 23.12 "Control Dampers."
- B. If multiple control-damper types are required, copy this article and re-edit for each type; assign each type a drawing designation and indicate each type on Drawings.
- C. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Warming and Ventilating; a Mestek Architectural Group company.
 - 2. Arrow United Industries.
 - 3. Cesco Products; a divsion of MESTEK, Inc.
 - 4. Flex-Tek Group.
 - 5. Greenheck Fan Corporation.
 - 6. Lloyd Industries, Inc.
 - 7. McGill AirFlow LLC.
 - 8. Metal Form Manufacturing, Inc.
 - 9. Nailor Industries Inc.
 - 10. NCA Manufacturing, Inc.
 - 11. Pottorff.
 - 12. Ruskin Company.
 - 13. Vent Products Co., Inc.
 - 14. Young Regulator Company.
- D. Frames:
 - 1. U shaped.
 - 2. 0.094-inch- thick, galvanized sheet steel.

- 3. Mitered and welded corners.
- E. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches.
 - 2. Opposed-blade design.
 - 3. Galvanized-steel.
 - 4. 0.0747-inch- thick dual skin.
 - 5. Blade Edging: Closed-cell neoprene.
 - 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- F. Blade Axles: 1/2-inch- diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
- G. Bearings:
 - 1. Stainless-steel sleeve.
 - 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aire Technologies.
 - 2. American Warming and Ventilating; a Mestek Architectural Group company.
 - 3. Arrow United Industries.
 - 4. Cesco Products; a divsion of MESTEK, Inc.
 - 5. Greenheck Fan Corporation.
 - 6. Nailor Industries Inc.
 - 7. NCA Manufacturing, Inc.
 - 8. Pottorff.
 - 9. Prefco.
 - 10. Ruskin Company.
 - 11. Vent Products Co., Inc.
 - 12. Ward Industries, Inc.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1 and 2 hours.
- E. Frame: Curtain type with blades inside airstream; fabricated with roll-formed, 0.034-inch- thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.39 inch thick, as indicated, and of length to suit application.

- Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical or horizontal as indicated.
- H. Blades: Roll-formed, interlocking, 0.034-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- thick, galvanized-steel blade connectors.
- I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.
- J. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.
- K. Heat-Responsive Device: Electric, link and switch package, factory installed, 165 deg F rated.

2.7 SMOKE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aire Technologies.
 - 2. American Warming and Ventilating; a Mestek Architectural Group company.
 - 3. Cesco Products; a divsion of MESTEK, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Nailor Industries Inc.
 - 6. Pottorff.
 - 7. Ruskin Company.
- B. General Requirements: Label according to UL 555S by an NRTL.
- C. Smoke Detector: Integral, factory wired for single-point connection.
- D. Frame: Hat-shaped, 0.094-inch- thick, galvanized sheet steel, with welded corners and mounting flange.
- E. Blades: Roll-formed, horizontal, interlocking, 0.063-inch- thick, galvanized sheet steel.
- F. Leakage: Class I.
- G. Rated pressure and velocity to exceed design airflow conditions.
- H. Mounting Sleeve: Factory-installed, 0.05-inch- thick, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone calking.
- I. Damper Motors: two-position action.
- J. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC"

- 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
- 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
- 5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
- 6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
- 7. Electrical Connection: 115 V, single phase, 60 Hz.
- K. Accessories:
 - 1. Auxiliary position switches for signaling fire alarm system.

2.8 FLANGE CONNECTORS

- A. If permitted by authorities having jurisdiction, flange connectors can substitute for slip-and-drive connections for smoke dampers.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. CL WARD & Family Inc.
 - 2. Ductmate Industries, Inc.
 - 3. Hardcast, Inc.
 - 4. Nexus PDQ.
 - 5. Ward Industries, Inc.
- C. Description: roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- D. Material: Galvanized steel.
- E. Gage and Shape: Match connecting ductwork.

2.9 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aero-Dyne Sound Control Co.
 - 2. CL WARD & Family Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Duro Dyne Inc.
 - 5. Elgen Manufacturing.
 - 6. Hardcast, Inc.
 - 7. METALAIRE, Inc.
 - 8. Nailor Industries Inc.
 - 9. SEMCO Incorporated.
 - 10. Ward Industries, Inc.

- B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Double wall.

2.10 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Aire Technologies.
 - 2. American Warming and Ventilating; a Mestek Architectural Group company.
 - 3. Cesco Products; a divsion of MESTEK, Inc.
 - 4. CL WARD & Family Inc.
 - 5. Ductmate Industries, Inc.
 - 6. Elgen Manufacturing.
 - 7. Flexmaster U.S.A., Inc.
 - 8. Greenheck Fan Corporation.
 - 9. McGill AirFlow LLC.
 - 10. Nailor Industries Inc.
 - 11. Pottorff.
 - 12. Ventfabrics, Inc.
 - 13. Ward Industries, Inc.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors - Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
- C. Pressure Relief Access Door:
 - 1. Door and Frame Material: Galvanized sheet steel.

- 2. Door: Double wall with insulation fill with metal thickness applicable for duct pressure class.
- 3. Operation: Open outward for positive-pressure ducts and inward for negative-pressure ducts.
- 4. Factory set at 3.0- to 8.0-inch wg.
- 5. Doors close when pressures are within set-point range.
- 6. Hinge: Continuous piano.
- 7. Latches: Cam.
- 8. Seal: Neoprene or foam rubber.
- 9. Insulation Fill: 1-inch- thick, fibrous-glass or polystyrene-foam board.

2.11 DUCT ACCESS PANEL ASSEMBLIES

- A. Retain this article for access panels in fire-rated duct systems, such as exhaust ducts for commercial kitchen hoods.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M.
 - 2. Ductmate Industries, Inc.
 - 3. Flame Gard, Inc.
- C. Labeled according to UL 1978 by an NRTL.
- D. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.
- E. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.
- F. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- G. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.12 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. Hardcast, Inc.
 - 5. JP Lamborn Co.
 - 6. Ventfabrics, Inc.
 - 7. Ward Industries, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.

- 1. Minimum Weight: 26 oz./sq. yd..
- 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
- 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.

2.13 FLEXIBLE DUCTS

- A. Insulated acoustical, Flexible Duct: UL 181, Class 1, aluminum laminate and polyester film with latex adhesive supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vaporbarrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 20 to plus 210 deg F.
 - 4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.
- B. Flexible Duct Connectors:
 - 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a wormgear action in sizes 3 through 18 inches, to suit duct size.
 - 2. Non-Clamp Connectors: Liquid adhesive plus tape.
- C. Acceptable Manuf: Flexmaster Type 1M or 1B or equal.

2.14 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit ductinsulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

- C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire and smoke dampers according to UL listing.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 - 7. At each change in direction and at maximum 50-foot spacing.
 - 8. Upstream and downstream from turning vanes.
 - 9. Upstream or downstream from duct silencers.
 - 10. Control devices requiring inspection.
 - 11. Elsewhere as indicated.
- I. Install access doors with swing against duct static pressure.
- J. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- K. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- L. Install flexible connectors to connect ducts to equipment.
- M. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.

- N. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- O. Connect flexible ducts to metal ducts with draw bands.
- P. Install duct test holes where required for testing and balancing purposes.
- 3.2 FIELD QUALITY CONTROL
 - A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire and smoke dampers to verify full range of movement and verify that proper heatresponse device is installed.
 - 4. Inspect turning vanes for proper and secure installation.

END OF SECTION 23 33 00
SECTION 23 34 16 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: For each product.
 - 1. Forward-curved centrifugal fans.

1.2 ACTION SUBMITTALS

- A. Product Data:
 - 1. Include rated capacities, furnished specialties, and accessories for each fan.
 - 2. Certified fan performance curves with system operating conditions indicated.
 - 3. Certified fan sound-power ratings.
 - 4. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 5. Material thickness and finishes, including color charts.
 - 6. Dampers, including housings, linkages, and operators.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show fan room layout and relationships between components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate and certify field measurements.
- B. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For centrifugal fans to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. AMCA Compliance: Comply with AMCA performance requirements and bear the AMCA-Certified Ratings Seal.
- B. Capacities and Characteristics:
 - 1. See schedule.

2.2 BACKWARD-INCLINED CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 3. Central Blower Company.
 - 4. Chicago Blower Corporation.
 - 5. Cincinnati Fan.
 - 6. CML Northern Blower Inc.
 - 7. Howden Buffalo Inc.
 - 8. Loren Cook Company.
 - 9. New York Blower Company (The).
- B. Description:
 - 1. Factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor, drive assembly, and support structure.
 - 2. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations.
 - 3. Factory-installed and -wired disconnect switch.
- C. Housings:
 - 1. Formed panels to make curved-scroll housings with shaped cutoff.
 - 2. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 3. Horizontally split, bolted-flange housing.
 - 4. Spun inlet cone with flange.
 - 5. Outlet flange.
- D. Backward-Inclined Wheels:
 - 1. Single-width-single-inlet and double-width-double-inlet construction with curved inlet flange, backplate, backward-inclined blades, and fastened to shaft with set screws.
 - 2. Welded or riveted to flange and backplate; cast-iron or cast-steel hub riveted to backplate.

- E. Shafts:
 - 1. Statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with adjustable alignment and belt tensioning.
 - 2. Turned, ground, and polished hot-rolled steel with keyway. Ship with protective coating of lubricating oil.
 - 3. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- F. Grease-Lubricated Shaft Bearings:
 - 1. Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, castiron housing.
- G. Belt Drives:
 - 1. Factory mounted, with adjustable alignment and belt tensioning.
 - 2. Service Factor Based on Fan Motor Size: 1.5.
 - 3. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 - 4. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 5. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 6. Belt Guards: Fabricate to comply with OSHA and SMACNA requirements of diamond-mesh wire screen welded to steel angle frame or equivalent, prime coated. Secure to fan or fan supports without short circuiting vibration isolation. Include provisions for adjustment of belt tension, lubrication, and use of tachometer with guard in place.
 - 7. Motor Mount: Adjustable for belt tensioning.
- H. Accessories:
 - 1. Access for Inspection, Cleaning, and Maintenance: Comply with requirements in ASHRAE 62.1.
 - 2. Scroll Drain Connection: NPS 1 steel pipe coupling welded to low point of fan scroll.
 - 3. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 - 4. Variable Inlet Vanes: With blades supported at both ends with two permanently lubricated bearings of same material as housing. Variable mechanism terminating in single control lever with control shaft for double-width fans.
 - 5. Discharge Dampers: Assembly with opposed blades constructed of two plates formed around and to shaft, channel frame, and sealed ball bearings; with blades linked outside of airstream to single control lever of same material as housing.
 - 6. Inlet Screens: Grid screen of same material as housing.
 - 7. Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
 - 8. Spark-Resistant Construction: AMCA 99.
 - 9. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.
 - 10. Weather Cover: Enameled-steel sheet with ventilation slots, bolted to housing.

2.3 FORWARD-CURVED CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Acme Engineering & Manufacturing Corp.

- 2. Aerovent; a division of Twin City Fan Companies, Ltd.
- 3. Central Blower Company.
- 4. Howden Buffalo Inc.
- 5. Lau Industries.
- 6. New York Blower Company (The).
- B. Description:
 - 1. Factory-fabricated, -assembled, -tested, and -finished, belt-driven centrifugal fans consisting of housing, wheel, fan shaft, bearings, motor, drive assembly, and support structure.
 - 2. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations.
 - 3. Factory-installed and -wired disconnect switch.
- C. Housings:
 - 1. Formed panels to make curved-scroll housings with shaped cutoff.
 - 2. Panel Bracing: Steel angle- or channel-iron member supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 3. Horizontally split, bolted-flange housing.
 - 4. Spun inlet cone with flange.
 - 5. Outlet flange.
- D. Forward-Curved Wheels:
 - 1. Black-enameled or galvanized-steel construction with inlet flange, backplate, shallow blades with inlet and tip curved forward in direction of airflow.
 - 2. Mechanically secured to flange and backplate; cast-steel hub swaged to backplate and fastened to shaft with set screws.
- E. Shafts:
 - 1. Statically and dynamically balanced and selected for continuous operation at maximum rated fan speed and motor horsepower, with adjustable alignment and belt tensioning.
 - 2. Turned, ground, and polished hot-rolled steel with keyway. Ship with protective coating of lubricating oil.
 - 3. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.
- F. Grease-Lubricated Shaft Bearings:
 - 1. Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, castiron housing.
- G. Belt Drives:
 - 1. Factory mounted, with adjustable alignment and belt tensioning.
 - 2. Service Factor Based on Fan Motor Size: 1.5.
 - 3. Fan Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 - 4. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
 - 5. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.
 - 6. Belt Guards: Fabricate to comply with OSHA and SMACNA requirements of diamond-mesh wire screen welded to steel angle frame or equivalent, prime coated. Secure to fan or fan

supports without short circuiting vibration isolation. Include provisions for adjustment of belt tension, lubrication, and use of tachometer with guard in place.

- 7. Motor Mount: Adjustable for belt tensioning.
- H. Accessories:
 - 1. Access for Inspection, Cleaning, and Maintenance: Comply with requirements in ASHRAE 62.1.
 - 2. Scroll Drain Connection: NPS 1 steel pipe coupling welded to low point of fan scroll.
 - 3. Companion Flanges: Rolled flanges for duct connections of same material as housing.
 - 4. Variable Inlet Vanes: With blades supported at both ends with two permanently lubricated bearings of same material as housing. Variable mechanism terminating in single control lever with control shaft for double-width fans.
 - 5. Discharge Dampers: Assembly with opposed blades constructed of two plates formed around and to shaft, channel frame, and sealed ball bearings; with blades linked outside of airstream to single control lever of same material as housing.
 - 6. Inlet Screens: Grid screen of same material as housing.
 - 7. Shaft Cooler: Metal disk between bearings and fan wheel, designed to dissipate heat from shaft.
 - 8. Spark-Resistant Construction: AMCA 99.
 - 9. Shaft Seals: Airtight seals installed around shaft on drive side of single-width fans.
 - 10. Weather Cover: Enameled-steel sheet with ventilation slots, bolted to housing.

2.4 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install centrifugal fans level and plumb.
- B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.
- D. Equipment Mounting:
 - 1. Install centrifugal fans on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 - 3. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- E. Curb Support: Install roof curb on roof structure, level and secure, according to "The NRCA Roofing and Waterproofing Manual," Low-Slope Membrane Roofing Construction Details Section, Illustration

"Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install and secure centrifugal fans on curbs, and coordinate roof penetrations and flashing with roof construction. Secure units to curb support with anchor bolts.

- F. Unit Support: Install centrifugal fans level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.
- G. Isolation Curb Support: Install centrifugal fans on isolation curbs, and install flexible duct connectors.
 - 1. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
 - 2. Comply with requirements in Section 23 05 48.13 "Vibration Controls for HVAC" for vibration isolation devices.
- H. Install units with clearances for service and maintenance.
- I. Label fans according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 33 00 "Air Duct Accessories."
- B. Install ducts adjacent to fans to allow service and maintenance.
- C. Install piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain with pipe sizes matching the drain connection.

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. See Section 23 05 93 "Testing, Adjusting, and Balancing For HVAC" for testing, adjusting, and balancing procedures.
 - 10. Remove and replace malfunctioning units and retest as specified above.

- B. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 23 34 16

SECTION 23 34 23 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.
 - 2. Ceiling-mounted ventilators.
 - 3. In-line centrifugal fans.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.
 - 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

PART 2 - PRODUCTS

- 2.1 CENTRIFUGAL ROOF VENTILATORS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Manufacturing Corp.

- 2. Aerovent; a division of Twin City Fan Companies, Ltd.
- 3. Greenheck Fan Corporation.
- 4. Loren Cook Company.
- B. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.
- C. Belt Drives:
 - 1. Resiliently mounted to housing.
 - 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
 - 5. Fan and motor isolated from exhaust airstream.
- D. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
 - 4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
 - 5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.
- E. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 12 inches or 16 inches.
 - 3. Sound Curb: Curb with sound-absorbing insulation.
 - 4. Pitch Mounting: Manufacture curb for roof slope.
 - 5. Metal Liner: Galvanized steel.
 - 6. Mounting Pedestal: Galvanized steel with removable access panel.
 - 7. Vented Curb: Unlined with louvered vents in vertical sides.
- F. Capacities and Characteristics:
 - 1. See Schedule.

2.2 CEILING-MOUNTED VENTILATORS

- A. These units are factory assembled with one or more centrifugal wheels up to 12 inches (300 mm) wide, directly connected to motor, enclosed in housing, with inlet grille and integral backdraft damper; AMCA rated.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme.
 - 2. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 3. Greenheck Fan Corporation.

- 4. Loren Cook Company.
- 5. Panasonic
- C. Housing: Steel, lined with acoustical insulation.
- D. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.
- E. Grille: Plastic, louvered grille with flange on intake and thumbscrew attachment to fan housing.
- F. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.
- G. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Manual Starter Switch: Single-pole rocker switch assembly with cover and pilot light.
 - 3. Time-Delay Switch: Assembly with single-pole rocker switch, timer, and cover plate.
 - 4. Motion Sensor: Motion detector with adjustable shutoff timer.
 - 5. Ceiling Radiation Damper: Fire-rated assembly with ceramic blanket, stainless-steel springs, and fusible link.
 - 6. Filter: Washable aluminum to fit between fan and grille.
 - 7. Isolation: Rubber-in-shear vibration isolators.
 - 8. Manufacturer's standard roof jack or wall cap, and transition fittings.
- H. Capacities and Characteristics:
 - 1. See schedule.

2.3 IN-LINE CENTRIFUGAL FANS

- A. These fans are both belt driven and direct drive, usually with spun-aluminum housings, and are used for small ventilation requirements.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 3. Greenheck Fan Corporation.
 - 4. Loren Cook Company.
 - 5. Panasonic.
- C. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- D. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel.
- E. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.
- F. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

- G. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Volume-Control Damper: Manually operated with quadrant lock, located in fan outlet.
 - 3. Companion Flanges: For inlet and outlet duct connections.
 - 4. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 5. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
- H. Capacities and Characteristics:
 - 1. See schedule.

2.4 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.5 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
 - 1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 - 3. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."

- B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 07 72 00 "Roof Accessories" for installation of roof curbs.
- C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- D. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- E. Install units with clearances for service and maintenance.
- F. Label units according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 33 00 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 5. Adjust belt tension.
 - 6. Adjust damper linkages for proper damper operation.
 - 7. Verify lubrication for bearings and other moving parts.
 - 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.

- 10. Shut unit down and reconnect automatic temperature-control operators.
- 11. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust belt tension.
- C. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- D. Replace fan and motor pulleys as required to achieve design airflow.
- E. Lubricate bearings.

END OF SECTION 23 34 23

SECTION 23 36 00 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Shutoff, single-duct air terminal units.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.
- C. Delegated-Design Submittal:
 - 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 2. Design Calculations: Calculations for selecting hangers and supports.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7.

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Krueger.
 - 2. Nailor Industries Inc.
 - 3. Price Industries.
 - 4. Titus.
 - 5. Trane.
- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 0.032-inch aluminum, single wall.
 - 1. Casing Lining: Adhesive attached, 1/2-inch- thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - a. Cover liner with nonporous foil.
 - b. Cover liner with nonporous foil and perforated metal.
 - 2. Casing Lining: Adhesive attached, 1/2-inch- thick, polyurethane foam insulation complying with UL 181 erosion requirements, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - 3. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 4. Air Outlet: S-slip and drive connections, size matching inlet size.
 - 5. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 - 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 7. Provide access door in bottom of VAV box for coil and damper access.
- D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from 0 to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.
- E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg inlet static pressure.
 - 2. Damper Position: Normally open.
- F. Attenuator Section: 0.032-inch aluminum sheet.
 - 1. Lining: Adhesive attached, 1/2-inch- thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - a. Cover liner with nonporous foil.
 - b. Cover liner with nonporous foil and perforated metal.

- 2. Lining: Adhesive attached, 3/4-inch- thick, polyurethane foam insulation complying with UL 181 erosion requirements, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
- 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- G. Access Door: Provide a manufacturer's integrated access door into VAV box housing for coil and damper access.
- H. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch, and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.
- I. Direct Digital Controls: Bidirectional damper operators and microprocessor-based controller and room sensor. Control devices shall be compatible with temperature controls specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC" and shall have the following features:
 - 1. Damper Actuator: 24 V, powered closed, powered open.
 - 2. Terminal Unit Controller: Pressure-independent, variable-air-volume controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:
 - a. Occupied and unoccupied operating mode.
 - b. Remote reset of airflow or temperature set points.
 - c. Adjusting and monitoring with portable terminal.
 - d. Communication with temperature-control system specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC."
 - 3. Room Sensor: Wall mounted, with temperature set-point adjustment and access for connection of portable operator terminal.

2.3 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Steel Cables: Galvanized steel complying with ASTM A 603.
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to ARI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factoryset airflows, coil type, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- C. Install wall-mounted thermostats.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Install piping adjacent to air terminal unit to allow service and maintenance.
- B. Hot-Water Piping: In addition to requirements in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties,"Section 15179 "Hydronic Piping Specialties," connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.
- C. Connect ducts to air terminal units according to Section 23 31 13 "Metal Ducts.

D. Make connections to air terminal units with flexible connectors complying with requirements in Section 23 33 00 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factoryset airflows. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Air terminal unit will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 23 36 00

SECTION 23 37 13 - DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Rectangular and square ceiling diffusers.
 - 2. Perforated diffusers.
 - 3. Louver face diffusers.
 - 4. Adjustable bar registers and grilles.
 - 5. Fixed face registers and grilles.
- B. Related Sections:
 - 1. Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers, registers, and grilles.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.
- B. Samples: For each exposed product and for each color and texture specified.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Krueger.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: Steel or Aluminum.
 - 4. Finish: Baked enamel, color selected by Architect.

- 5. Face Size: 24 by 24 inches or 12 by 12 inches.
- 6. Face Style: Four cone.
- 7. Mounting: Surface T-bar.
- 8. Pattern: Adjustable.
- 9. Dampers in duct: Combination damper and grid.
- 10. Accessories:
 - a. Equalizing grid.
 - b. Plaster ring.
 - c. Safety chain.
 - d. Wire guard.
 - e. Sectorizing baffles.
 - f. Operating rod extension.
- B. Perforated Diffuser:
 - 1. Devices shall be specifically designed for variable-air-volume flows.
 - 2. Material: Steel backpan and pattern controllers, with steel or aluminum face.
 - 3. Finish: Baked enamel, color selected by Architect.
 - 4. Face Size: 12 by 12 inches or 24 by 24 inches.
 - 5. Duct Inlet: Round.
 - 6. Face Style: Flush.
 - 7. Mounting: Surface T-bar.
 - 8. Pattern Controller: Fixed with curved blades at inlet.
 - 9. Dampers in duct: Butterfly.
 - 10. Accessories:
 - a. Equalizing grid.
 - b. Plaster ring.
 - c. Safety chain.
 - d. Wire guard.
 - e. Sectorizing baffles.
 - f. Operating rod extension.
- C. Louver Face Diffuser:
 - 1. Devices shall be specifically designed for variable-air-volume flows.
 - 2. Material: Steel or Aluminum.
 - 3. Finish: Baked enamel, color selected by Architect.
 - 4. Mounting: Surface with beveled frame.
 - 5. Pattern: One-way Two-way Adjustable core style.
 - 6. Dampers: Radial opposed blade.
 - 7. Accessories:
 - a. Square to round neck adaptor.
 - b. Adjustable pattern vanes.
 - c. Throw reducing vanes.
 - d. Equalizing grid.
 - e. Plaster ring.
 - f. Safety chain.
 - g. Wire guard.
 - h. Sectorizing baffles.
 - i. Operating rod extension.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.2 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Krueger.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - 2. Material: Steel or Aluminum.
 - 3. Finish: Baked enamel, color selected by Architect.
 - 4. Face Blade Arrangement: Horizontal spaced 3/4 inch apart.
 - 5. Core Construction: Integral.
 - 6. Rear-Blade Arrangement: Horizontal spaced 3/4 inch apart.
 - 7. Frame: 1 inch wide.
 - 8. Mounting: Concealed.
 - 9. Damper Type: Adjustable opposed blade.
- 2.3 SOURCE QUALITY CONTROL
 - A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13

SECTION 23 37 23 - HVAC GRAVITY VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Louvered-penthouse ventilators.
 - 2. Roof hoods.

1.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Ventilators shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of ventilator components, noise or metal fatigue caused by ventilator blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 - 1. Wind Loads: Determine loads based on pressures as indicated on Drawings.
- B. Seismic Performance: Ventilators, including attachments to other construction, shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For gravity ventilators. Include plans, elevations, sections, details, ventilator attachments to curbs, and curb attachments to roof structure.
- C. Samples: For each exposed product and for each color and texture specified.
- D. Delegated-Design Submittal: For shop-fabricated ventilators indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of shop-fabricated ventilators.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For ventilators, accessories, and components, from manufacturer.

1.5 COORDINATION

A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extrusions: ASTM B 221, Alloy 6063-T5 or T-52.
- B. Aluminum Sheet: ASTM B 209, Alloy 3003 or 5005 with temper as required for forming or as otherwise recommended by metal producer for required finish.
- C. Galvanized-Steel Sheet: ASTM A 653/A 653M, G90 zinc coating, mill phosphatized.
- D. Fasteners: Same basic metal and alloy as fastened metal or 300 Series stainless steel unless otherwise indicated. Do not use metals that are incompatible with joined materials.
 - 1. Use types and sizes to suit unit installation conditions.
 - 2. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.
- E. Post-Installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors made from stainless-steel components, with capability to sustain without failure a load equal to 4 times the loads imposed for concrete, or 6 times the load imposed for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

- A. Factory fabricate gravity ventilators to minimize field splicing and assembly. Disassemble units to the minimum extent as necessary for shipping and handling. Clearly mark units for reassembly and coordinated installation.
- B. Fabricate frames, including integral bases, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
- C. Fabricate units with closely fitted joints and exposed connections accurately located and secured.
- D. Fabricate supports, anchorages, and accessories required for complete assembly.

2.3 LOUVERED-PENTHOUSE VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Aerovent; a division of Twin City Fan Companies, Ltd.
 - 3. Carnes Company.
 - 4. Greenheck Fan Corporation.

- 5. Loren Cook Company.
- B. Construction: All-welded assembly with 6-inch-deep louvers, mitered corners, and galvanized-steel sheet roof with mineral-fiber insulation and vapor barrier.
- C. Frame and Blade Material and Nominal Thickness: Extruded aluminum, of thickness required to comply with structural performance requirements, but not less than 0.080 inch for frames and 0.060 inch for blades.
 - 1. AMCA Seal: Mark units with the AMCA Certified Ratings Seal.
 - 2. Exterior Corners: Prefabricated corner units with mitered blades with concealed close-fitting splices and with fully recessed mullions at corners.
- D. Frame and Blade Material and Nominal Thickness: Galvanized-steel sheet, of thickness required to comply with structural performance requirements, but not less than 0.052 inch for frames and 0.052 inch for blades.
 - 1. AMCA Seal: Mark units with the AMCA Certified Ratings Seal.
 - 2. Exterior Corners: Prefabricated corner units with mitered blades with concealed close-fitting splices and with fully recessed mullions at corners.
- E. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 12 inches or 16 inches.
- F. Bird Screening: Galvanized-steel, 1/2-inch- square mesh, 0.041-inch wire.
- G. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
- H. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
 - 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.
- I. Capacities and Characteristics:
 - 1. See Schedule.

2.4 ROOF HOODS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 1. Acme Engineering & Manufacturing Corp.
- 2. Aerovent; a division of Twin City Fan Companies, Ltd.
- 3. Carnes Company.
- 4. Greenheck Fan Corporation.
- 5. Loren Cook Company.
- B. Factory fabricated according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figures 6-6 and 6-7.
- C. Materials: Galvanized-steel sheet, minimum 0.064-inch- thick base and 0.040-inch- thick hood; suitably reinforced.
- D. Roof Curbs: Galvanized-steel sheet; with mitered and welded corners; 1-1/2-inch- thick, rigid fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to fit roof opening and ventilator base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 12 inches or 16 inches.
- E. Bird Screening: Galvanized-steel, 1/2-inch- square mesh, 0.041-inch wire.
- F. Insect Screening: Aluminum, 18-by-16 mesh, 0.012-inch wire.
- G. Galvanized-Steel Sheet Finish:
 - 1. Surface Preparation: Clean surfaces of dirt, grease, and other contaminants. Clean welds, mechanical connections, and abraded areas and repair galvanizing according to ASTM A 780. Apply a conversion coating suited to the organic coating to be applied over it.
 - 2. Factory Priming for Field-Painted Finish: Where field painting after installation is indicated, apply an air-dried primer immediately after cleaning and pretreating.
 - 3. Baked-Enamel Finish: Immediately after cleaning and pretreating, apply manufacturer's standard finish consisting of prime coat and thermosetting topcoat, with a minimum dry film thickness of 1 mil for topcoat and an overall minimum dry film thickness of 2 mils.
 - a. Color and Gloss: As selected by Architect from manufacturer's full range.
- H. Capacities and Characteristics:
 - 1. See Schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install gravity ventilators level, plumb, and at indicated alignment with adjacent work.
- B. Secure gravity ventilators to roof curbs with cadmium-plated hardware. Use concealed anchorages where possible. Refer to Section 07 72 00 "Roof Accessories."
- C. Install gravity ventilators with clearances for service and maintenance.
- D. Install perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

- E. Install concealed gaskets, flashings, joint fillers, and insulation as installation progresses. Comply with Section 07 92 00 "Joint Sealants" for sealants applied during installation.
- F. Label gravity ventilators according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."
- G. Protect galvanized and nonferrous-metal surfaces from corrosion or galvanic action by applying a heavy coating of bituminous paint on surfaces that will be in contact with concrete, masonry, or dissimilar metals.
- H. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

END OF SECTION 23 37 23

SECTION 23 38 13 - COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes Type I and Type II commercial kitchen hoods.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Filters/baffles.
 - 2. Fire-suppression systems.
 - 3. Lighting fixtures.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer.
 - 1. Show plan view, elevation view, sections, roughing-in dimensions, service requirements, duct connection sizes, and attachments to other work.
 - 2. Show cooking equipment plan and elevation to confirm minimum code-required overhang.
 - 3. Indicate performance, exhaust and makeup air airflow, and pressure loss at actual Project-site elevation.
 - 4. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 5. Design Calculations: Calculate requirements for selecting seismic restraints.
 - 6. Wiring Diagrams: Power, signal, and control wiring.
 - 7. Piping Diagrams: Detail fire-suppression piping and components and differentiate between manufacturer-installed and field-installed piping. Show cooking equipment plan and elevation to illustrate fire-suppression nozzle locations.

1.3 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control test reports.

1.4 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1/D 1.1M, "Structural Welding Code - Steel," for hangers and supports; and AWS D9.1/D9.1M, "Sheet Metal Welding Code," for joint and seam welding.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

PART 2 - PRODUCTS

- 2.1 HOOD MATERIALS
 - A. Stainless-Steel Sheet: ASTM A 666, Type 304.
 - 1. Minimum Thickness: 0.050 inch.
 - 2. Finish: Comply with SSINA's "Finishes for Stainless Steel" for recommendations for applying and designating finishes.
 - a. Finish shall be free from tool and die marks and stretch lines and shall have uniform, directionally textured, polished finish indicated, free of cross scratches. Grain shall run with long dimension of each piece.
 - 3. Concealed Stainless-Steel Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished finish).
 - 4. Exposed Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished).
 - 5. Exposed Surfaces: ASTM A 480/A 480M, No. 3 finish (intermediate polished surface).
 - 6. Exposed Surfaces: ASTM A 480/A 480M, No. 4 finish (directional satin).
 - 7. Exposed Surfaces: ASTM A 480/A 480M, No. 6 finish (dull satin).
 - 8. Exposed Surfaces: ASTM A 480/A 480M, No. 7 finish (reflective, directional polish).
 - 9. Exposed Surfaces: ASTM A 480/A 480M, No. 8 finish (mirrorlike reflective, nondirectional polish).
 - 10. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
 - B. Zinc-Coated Steel Shapes: ASTM A 36/A 36M, zinc coated according to ASTM A 123/A 123M requirements.
 - C. Sealant: ASTM C 920; Type S, Grade NS, Class 25, Use NT. Elastomeric sealant shall be NSF certified for commercial kitchen hood application. Sealants, when cured and washed, shall comply with requirements in 21 CFR, Section 17 7. 2600, for use in areas that come in contact with food.
 - 1. Color: As selected by Architect from manufacturer's full range.
 - 2. Backer Rod: Closed-cell polyethylene, in diameter larger than joint width.
 - D. Sound Dampening: NSF-certified, nonabsorbent, hard-drying, sound-deadening compound for permanent adhesion to metal in minimum 1/8-inch thickness that does not chip, flake, or blister.
 - E. Gaskets: NSF certified for end-use application indicated; of resilient rubber, neoprene, or PVC that is nontoxic, stable, odorless, nonabsorbent, and unaffected by exposure to foods and cleaning compounds, and that passes testing according to UL 710.

2.2 GENERAL HOOD FABRICATION REQUIREMENTS

- A. Welding: Use welding rod of same composition as metal being welded. Use methods that minimize distortion and develop strength and corrosion resistance of base metal. Make ductile welds free of mechanical imperfections such as gas holes, pits, or cracks.
 - 1. Welded Butt Joints: Full-penetration welds for full-joint length. Make joints flat, continuous, and homogenous with sheet metal without relying on straps under seams, filling in with solder, or spot welding.

- 2. Grind exposed welded joints flush with adjoining material and polish to match adjoining surfaces.
- 3. Where fasteners are welded to underside of equipment, finish reverse side of weld smooth and flush.
- 4. Coat concealed stainless-steel welded joints with metallic-based paint to prevent corrosion.
- B. For metal butt joints, comply with SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."
- C. Form metal with break bends that are not flaky, scaly, or cracked in appearance; where breaks mar uniform surface appearance of material, remove marks by grinding, polishing, and finishing.
- D. Sheared Metal Edges: Finish free of burrs, fins, and irregular projections.
- E. In food zones, as defined in NSF, fabricate surfaces free from exposed fasteners.
- F. Cap exposed fastener threads, including those inside cabinets, with stainless-steel lock washers and stainless-steel cap (acorn) nuts.
- G. Fabricate pipe slots on equipment with turned-up edges sized to accommodate service and utility lines and mechanical connections.
- H. Fabricate enclosures, including panels, housings, and skirts, to conceal service lines, operating components, and mechanical and electrical devices including those inside cabinets, unless otherwise indicated.
- I. Fabricate equipment edges and backsplashes according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."
- J. Fabricate enclosure panels to ceiling and wall as follows:
 - 1. Fabricate panels on all exposed side(s) with same material as hood, and extend from ceiling to top of hood canopy and from canopy to wall.
 - 2. Wall Offset Spacer: Minimum of 3 inches.
 - 3. Wall Shelves and Overshelves: Fabricate according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines," with minimum 0.0625-inch- thick, stainless-steel shelf tops.

2.3 TYPE I EXHAUST HOOD FABRICATION

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Captive-Aire Systems.
 - 2. Gaylord Industries, Inc.
 - 3. Greasmaster
 - 4. Greenheck Fan Corporation.
 - 5. Kees
 - 6. Halton Company.
- B. Weld all joints exposed to grease with continuous welds, and make filters/baffles or grease extractors and makeup air diffusers easily accessible for cleaning.
 - 1. Fabricate hoods according to NSF 2, "Food Equipment."

- 2. Hoods shall be listed and labeled, according to UL 710, by a testing agency acceptable to authorities having jurisdiction.
- 3. Hoods shall be designed, fabricated, and installed according to NFPA 96.
- 4. Include access panels as required for access to fire dampers and fusible links.
- 5. Duct Collars Without Fire Dampers: Minimum 0.0598-inch- thick steel at least 3 inches long, continuously welded to top of hood and at corners.
- 6. Duct-Collar With Fire Dampers: Collar and damper shall comply with UL 710 testing and listing required for the entire hood.
 - a. Collar: Minimum 0.0598-inch- thick stainless steel, at least 3 inches long, continuously welded to top of hood and at corners.
 - b. Blades: Minimum 0.1046-inch- thick stainless steel, counterbalanced to remain closed after actuation.
 - c. Blade Pivot and Spring: Stainless steel.
 - d. Fusible Link: Replaceable, 212 deg F rated.
- 7. Makeup Air Fire Dampers: Labeled, according to UL 555, by a testing agency acceptable to authorities having jurisdiction.
 - a. Fire Rating: 1-1/2 hours.
 - b. Frame: SMACNA Type A, with blades in airstream; fabricated with roll-formed, galvanized steel; with mitered and interlocking corners.
 - c. Blades: Roll-formed, interlocking or folded, minimum 0.034-inch- thick, galvanized-steel sheet.
 - d. Horizontal Dampers: Include a blade lock and stainless-steel closure spring.
 - e. Fusible Link: Replaceable, 165 deg F rated.
- C. Hood Configuration: Exhaust only with supply plenum See drawings for details.
- D. Hood Style: See Drawings.
- E. Filters/Baffles: Removable, aluminum, with spring-loaded fastening. Fabricate stainless steel for filter frame and removable collection cup and pitched trough. Exposed surfaces shall be pitched to drain to collection cup. Filters/baffles shall be tested according to UL 1046, "Grease Filters for Exhaust Ducts," by an NRTL acceptable to authorities having jurisdiction.
- F. Lighting Fixtures: Recessed or Surface-mounted, fluorescent fixtures and lamps with lenses sealed vaportight. Wiring shall be installed in conduit on hood exterior. Number and location of fixtures shall provide a minimum of 70 fc at 30 inches above finished floor.
 - 1. Light switches shall be mounted on front panel of hood canopy.
 - 2. Lighting Fixtures: Fluorescent complying with UL 1598.
- G. Hood Controls: Wall-mounting control cabinet, factory wired to control groups of adjacent hoods, and fabricated of stainless steel.
 - Exhaust Fan: On-off switches shall start and stop the exhaust fan. Interlock exhaust fan with makeup air supply fan to operate simultaneously. Interlock exhaust fan with fire-suppression system to operate fan(s) during fire-suppression-agent release and to remain in operation until manually stopped. Include red pilot light to indicate fan operation. Motor starters shall comply with Section 26 29 13 "Enclosed Controllers."
 - 2. Exhaust Fan Interlock: Factory wire the exhaust fan starters in a single control cabinet for adjacent hoods to operate together.
 - 3. High-Temperature Control: Alarm shall sound and cooking equipment shall shut down before hood discharge temperature rises to actuation temperature of fire-suppression system.

- 4. Variable speed exhaust and make up air supply fan control systems: Provide a system to vary the volume of exhaust and make up air based on the hood manufacturer's UL listed controls, which base fan speed and air volume on exhaust temperature. Make up air unit and exhaust volume shall follow similar variable volume control scheme. Provide all necessary interlocks, variable speed drives, controllers, etc. as needed for a complete and operational installation.
- H. Capacities and Characteristics:
 - 1. See schedule.

2.4 TYPE II EXHAUST HOOD FABRICATION

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Captive-Aire Systems.
 - 2. Gaylord Industries, Inc.
 - 3. Greasmaster
 - 4. Greenheck Fan Corporation.
 - 5. Kees
 - 6. Halton Company.
- B. Fabricate hoods according to NSF 2, "Food Equipment."
- C. Fabricate hoods to comply with SMACNA's "HVAC Duct Construction Standards: Metal and Flexible."
- D. Hood Configuration: Exhaust only.
 - 1. Makeup air shall be introduced by combination of induction and diffusion inside canopy. If makeup air is not heated, insulate interior of makeup air plenum with high-density insulation having maximum flame-spread and smoke-developed indexes of 25 and 50, respectively.
 - 2. Makeup air shall be introduced through front of canopy through supply-air registers.
 - 3. Makeup air shall be introduced through laminar-flow-type, perforated metal panels on front of hood canopy.
- E. Hood Type: Heat and vapor removal.
- F. Hood Style: See Drawings
- G. Condensate Hood Baffles: Removable, stainless-steel baffles to drain into a hood drain trough, and stainless-steel drain piping.
- H. Lighting Fixtures: Recessed or Surface-mounted, fluorescent fixtures and lamps with lenses sealed vaportight. Wiring shall be installed in stainless-steel conduit on hood exterior. Number and location of fixtures shall provide a minimum of 70 fc at 30 inches above finished floor.
 - 1. Light switches shall be mounted on front panel of hood canopy.
 - 2. Lighting Fixtures: Fluorescent complying with UL 1598.
- I. Capacities and Characteristics:
 - 1. See Schedule.

2.5 WET-CHEMICAL FIRE-SUPPRESSION SYSTEM

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ansul Incorporated; Tyco International.
 - 2. Badger Fire Protection.
 - 3. Kidde Fire Systems.
 - 4. Pyro-Chem; Tyco Fire Suppression & Building Products.
- B. Description: Engineered distribution piping designed for automatic detection and release or manual release of fire-suppression agent by hood operator. Fire-suppression system shall be listed and labeled for complying with NFPA 17A, "Wet Chemical Extinguishing Systems," by a qualified testing agency acceptable to authorities having jurisdiction.
 - 1. Steel Pipe, NPS 2 and Smaller: ASTM A 53/A 53M, Type S, Grade A, Schedule 40, plain ends.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300.
 - 3. Piping, fusible links and release mechanism, tank containing the suppression agent, and controls shall be factory installed. Controls shall be in stainless-steel control cabinet mounted on hood or wall. Furnish manual pull station for wall mounting. Exposed piping shall be covered with chrome-plated aluminum tubing. Exposed fittings shall be chrome plated.
 - 4. Liquid Extinguishing Agent: Noncorrosive, low-pH liquid.
 - 5. Furnish electric-operated gas shutoff valve; refer to Section 23 11 23 "Facility Natural-Gas Piping."
 - 6. Furnish electric-operated gas shutoff valve with clearly marked open and closed indicator for field installation.
 - 7. Fire-suppression system controls shall be integrated with controls for fans, lights, and fuel supply and located in a single cabinet for each group of hoods immediately adjacent.
 - 8. Wiring shall have color-coded, numbered terminal blocks and grounding bar. Spare terminals for fire alarm, optional wiring to start fan with fire alarm, red pilot light to indicate fan operation, and control switches shall all be factory wired in control cabinet with relays or starters. Include spare terminals for fire alarm, and wiring to start fan with fire alarm.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Complete field assembly of hoods where required.
 - 1. Make closed butt and contact joints that do not require filler.
 - 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish. Comply with welding requirements in Part 2 "General Hood Fabrication Requirements" Article.
- B. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, filters/baffles, grease extractor, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.
- C. Make cutouts in hoods where required to run service lines and to make final connections, and seal openings according to UL 1978.
- D. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners, unless otherwise indicated.
- E. Install hoods to operate free from vibration.
- F. Install seismic restraints according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines," Appendix A, "Seismic Restraint Details."
- G. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.
- H. Install sealant in joints between equipment and abutting surfaces with continuous joint backing, unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.
- I. Install lamps, with maximum recommended wattage, in equipment with integral lighting.
- J. Set initial temperatures, and calibrate sensors.
- K. Set field-adjustable switches.
- L. Connect ducts according to requirements in Section 23 33 00 "Air Duct Accessories." Install flexible connectors on makeup air supply duct. Weld exhaust-duct connections with continuous liquidtight joint.
- M. Install fire-suppression piping for remote-mounted suppression systems according to NFPA 17A, "Wet Chemical Extinguishing Systems."

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - 1. Test each equipment item for proper operation. Repair or replace equipment that is defective, including units that operate below required capacity or that operate with excessive noise or vibration.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Perform hood performance tests required by authorities having jurisdiction.
 - 4. Perform fire-suppression system performance tests required by authorities having jurisdiction.
- D. Prepare test and inspection reports.

END OF SECTION 23 38 13

SECTION 23 51 00 - BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Listed double-wall vents.
 - 2. Listed grease ducts.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Type B and BW vents.
 - 2. Special gas vents.
 - 3. Grease ducts.
- B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.

PART 2 - PRODUCTS

2.1 LISTED TYPE B AND BW VENTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Metal Products.
 - 2. Cleaver-Brooks.
 - 3. FAMCO.
 - 4. Hart & Cooley Inc.
 - 5. Heat-Fab, Inc.
 - 6. Industrial Chimney Company.
 - 7. LSP Products Group, Inc.
 - 8. M&G DuraVent, Inc.; a member of the M&G Group.
 - 9. Metal-Fab, Inc.
 - 10. Schebler Co. (The).
 - 11. Security Chimneys International.
 - 12. Selkirk Corporation.
 - 13. Tru-Flex Metal Hose Corp.
 - 14. Van-Packer Company, Inc.
- B. Description: Double-wall metal vents tested according to UL 441 and rated for 480 deg F continuously for Type B, or 550 deg F continuously for Type BW; with neutral or negative flue pressure complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1/4-inch airspace.

- D. Inner Shell: ASTM B 209, Type 1100 aluminum.
- E. Outer Jacket: Galvanized steel.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
 - 2. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.
 - 3. Termination: Exit cone with drain section incorporated into riser.
 - 4. Termination: Antibackdraft.
- 2.2 LISTED SPECIAL GAS VENTS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Heat-Fab, Inc.
 - 2. Metal-Fab, Inc.
 - 3. Schebler Co. (The).
 - 4. Selkirk Corporation.
 - 5. Z-Flex; a division of the Novaflex Group.
 - B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.
 - C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch airspace.
 - D. Inner Shell: ASTM A 959, Type 29-4C stainless steel.
 - E. Outer Jacket: Stainless steel.
 - F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
 - 2. Termination: Round chimney top designed to exclude minimum 98 percent of rainfall.
 - 3. Termination: Exit cone with drain section incorporated into riser.

2.3 LISTED GREASE DUCTS

- 1. Heat-Fab, Inc.
- 2. Metal-Fab, Inc.
- 3. Selkirk Corporation.
- 4. Schebler Co. (The).
- 5. Captive Aire.
- B. Description: Double-wall metal vents tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211.

- C. Construction: Inner shell and outer jacket separated by at least a 2-inch annular space filled with high-temperature, ceramic-fiber insulation.
- D. Inner Shell: ASTM A 666, Type 316 stainless steel.
- E. Outer Jacket: Stainless steel where concealed. Stainless steel where exposed.
- F. Accessories: Tees, elbows, increasers, hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Include unique components required to comply with NFPA 96 including cleanouts, transitions, adapters and drain fittings.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Listed Type B and BW Vents: Vents for certified gas appliances.
- B. Listed Special Gas Vents: Condensing gas appliances.
- C. Listed Grease Ducts: Type I commercial kitchen grease duct.

3.2 INSTALLATION OF LISTED VENTS AND CHIMNEYS

- A. Locate to comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211, whichever is most stringent.
- B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- E. Lap joints in direction of flow.
- F. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.
- G. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.
- H. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.

END OF SECTION 23 51 00

SECTION 23 52 16 - CONDENSING BOILERS

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes packaged, factory-fabricated and -assembled, modulating, gas-fired, fire-tube condensing boilers, trim, and accessories for generating hot water.

1.2 SUBMITTALS

- A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings: For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: Power, signal, and control wiring.
- C. Source quality-control test reports.
- D. Field quality-control test reports.
- E. Operation and maintenance data.
- F. Warranty: Special warranty specified in this Section.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.
- C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil Fired Boilers Minimum Efficiency Requirements."
- D. DOE Compliance: Minimum efficiency shall comply with 10 CFR 430, Subpart B, Appendix N, "Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers."
- E. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.

1.4 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period. This is a material only warranty.
 - 1. Warranty Period for Condensing Boiler: 10 years from date of Substantial Completion for heat exchanger tubes.
 - 2. Warranty Period for Condensing Boiler: 1 year, full boiler parts and labor warranty.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Subject to compliance with requirements presented below, provide the product indicated on Drawings or request prior approval for an equal:
 - 1. Lochinvar Crest Series
- B. The following requirements must be met and proven in a prior approval submittal to be considered for bidding:
 - 1. Prove that the submitted alternate will fit, including all manufacturer's clearances, connections, pipng, etc, in the space provided.
 - 2. Prove that the boiler will meet the following requirements:
 - a. Modulation of firing rate minimum 20:1
 - b. Condensing boiler with 92% efficiency at 100°F entering water temperature at full fire.
 - c. On board boiler controller with sequencing capabilities.
 - d. Primary constant flow with no secondary boiler pump required.

2.2 MANUFACTURED UNITS

- A. Description: Factory-fabricated, -assembled, and -tested, fire-tube condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Water heating service only.
- B. Heat Exchanger: Individually removable 316L stainless steel heat exchanger tubes.
- C. Combustion Chamber: Stainless steel, sealed.
- D. Burner: Natural gas, forced draft drawing from gas premixing valve.
- E. Blower: Centrifugal fan to operate during each burner firing sequence and to prepurge and postpurge the combustion chamber.
 - 1. Motors: Comply with requirements specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

- a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- F. Gas Train: Combination gas valve with manual shutoff and pressure regulator. Provide with ASME CSD-1 components.
- G. Casing:
 - 1. 16 ga. Jacket: Sheet metal, with snap-in or interlocking closures.
 - 2. Control Compartment Enclosures: NEMA 250, Type 1A.
 - 3. Finish: Heat resistant powder coating.
 - 4. Insulation: Minimum 1-inch- thick, mineral-fiber insulation surrounding the heat exchanger.
 - 5. Combustion-Air Connections: Inlet and vent duct collars.
 - 6. Mounting base to secure boiler.
 - 7. Access: Provide access panels to allow for cleaning of entire tube area.
- H. Characteristics and Capacities:
 - 1. See Schedule on Drawings for complete information.

2.3 TRIM

- A. Include devices sized to comply with ANSI B31.9, "Building Services Piping."
- B. Aquastat Controllers: Operating, firing rate, and high limit.
- C. Safety Relief Valve: ASME rated.
- D. Pressure and Temperature Gage: Minimum 3-1/2-inch- diameter, combination water-pressure and temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.
- E. Boiler Air Vent: Manual.
- F. Drain Valve: Minimum NPS 3/4 hose-end gate valve.
- G. Water flow switch.
- H. Condensate neutralization kit.

2.4 CONTROLS

- A. Refer to Division 23 Section "Direct Digital Control (DDC) System For HVAC."
- B. Boiler operating controls shall include the following devices and features:
 - 1. Control transformer.
 - 2. Set-Point Adjust: Set points shall be adjustable.
 - 3. Sequence of Operation: See Specification Section 23 09 93.
- C. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.

- 1. High Cutoff: Manual reset stops burner if operating conditions rise above maximum boiler design temperature.
- 2. Low-Water Cutoff Switch: Electronic probe shall prevent burner operation on low water. Cutoff switch shall be manual-reset type.
- 3. Blocked Inlet Safety Switch: Manual-reset pressure switch field mounted on boiler combustionair inlet.
- 4. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for above conditions.
- D. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor, control, and display boiler status and alarms. See 230993 for points list and requirements.
 - 1. A communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.

2.5 ELECTRICAL POWER

- A. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.
- B. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a raceway.
 - 4. Field power interface shall be to fused disconnect switch.
 - 5. Provide branch power circuit to each motor and to controls.
 - 6. Provide each motor with overcurrent protection.

2.6 VENTING KITS

- A. Kit: Complete system, ASTM A 959, Type 29-4C stainless steel, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.
- B. Combustion-Air Intake: Complete system, galvanized steel, pipe, vent terminal with screen, inlet air coupling, and sealant.

2.7 SOURCE QUALITY CONTROL

- A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.
- B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

PART 3 - EXECUTION

3.1 BOILER INSTALLATION

- A. Install boilers level on concrete base. Concrete base is specified in Division 23 Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.
- B. Install gas-fired boilers according to NFPA 54 and ASME CSD-1.
- C. Assemble and install boiler trim.
- D. Install electrical devices furnished with boiler but not specified to be factory mounted.
- E. Install control wiring to field-mounted electrical devices.

3.2 CONNECTIONS

- A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to boiler to allow service and maintenance.
- C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.
- D. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service. Flexible connectors and their installation are specified in Division 23 Section "Common Work Results for HVAC."
- E. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.
- F. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
- G. Install piping from safety relief valves to nearest floor drain.
- H. Boiler Venting:
 - 1. Install flue venting kit and combustion-air intake.
 - 2. Connect full size to boiler connections. Comply with requirements in Division 23 Section "Breechings, Chimneys, and Stacks."
- I. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
- J. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

- B. Tests and Inspections:
 - 1. Perform installation and startup checks according to manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust airfuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level, and water temperature.
 - b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other than normal occupancy hours for this purpose.
- 3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain boilers.

END OF SECTION 23 52 16

SECTION 23 57 00 - HEAT EXCHANGERS FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes plate and frame heat exchangers.

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Coordination Drawings: Equipment room, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members to which heat exchangers will be attached.

1.3 QUALITY ASSURANCE

A. ASME Compliance: Fabricate and label heat exchangers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

PART 2 - PRODUCTS

2.1 GASKETED PLATE HEAT EXCHANGERS

- A. Manufacturers:
 - 1. Alfa Laval Thermal, Inc.
 - 2. Armstrong Pumps, Inc.
 - 3. ITT Industries; Bell & Gossett.
 - 4. Taco
- B. Configuration: Freestanding assembly consisting of frame support, top and bottom carrying and guide bars, fixed and movable end plates, tie rods, individually removable plates, and one-piece gaskets.
- C. Frame:
 - 1. Capacity to accommodate 20 percent additional plates.
 - 2. Painted carbon steel with provisions for anchoring to support.
- D. Top and Bottom Carrying and Guide Bars: Painted carbon steel, aluminum, or stainless steel.

- 1. Fabricate attachment of heat-exchanger carrying and guide bars with reinforcement strong enough to resist heat-exchanger movement during a seismic event when heat-exchanger carrying and guide bars are anchored to building structure.
- E. End-Plate Material: Painted carbon steel.
- F. Tie Rods and Nuts: Steel or stainless steel.
- G. Plate Material: 0.024 inch thick before stamping; Type 304 stainless steel.
- H. Gasket Material: Nitrile rubber.
- I. Piping Connections:
 - 1. Threaded port for NPS 2 and smaller. For larger sizes, furnish end-plate port with threaded studs suitable for flanged connection.
- J. Enclose plates in a solid aluminum removable shroud.
- K. Capacity and Characteristics:
 - 1. See Drawings

PART 3 - EXECUTION

3.1 HEAT-EXCHANGER INSTALLATION

- A. Install shell-and-tube heat exchangers on saddle supports.
- B. Install shell-and-tube heat exchangers on, and anchor to, concrete base.

3.2 CONNECTIONS

- A. Install shutoff valves at heat-exchanger inlet and outlet connections.
- B. Install relief valves on heat-exchanger heated-fluid connection and install pipe relief valves, full size of valve connection, to floor drain.
- C. Install vacuum breaker at heat-exchanger steam inlet connection.
- D. Install hose end valve to drain shell.

END OF SECTION 23 57 00

SECTION 23 64 23 - AIR COOLED SCREW WATER CHILLERS

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. The requirements of this Section shall conform to the general provisions of the Contract, including General and Supplementary Conditions, Conditions of the Contract, and Contract Drawings.

1.2 SCOPE

- A. Provide Microprocessor controlled, twin-screw compressor, air-cooled, liquid chillers of the scheduled capacities as shown and indicated on the Drawings, including but not limited to:
 - 1. Chiller package
 - 2. Charge of refrigerant and oil
 - 3. Electrical power and control connections
 - 4. Chilled fluid connections
 - 5. Manufacturer start-up

1.3 QUALITY ASSURANCE

- A. Products shall be Designed, Tested, Rated and Certified in accordance with, and Installed in compliance with applicable sections of the following Standards and Codes:
 - 1. AHRI 550/590 Water Chilling Packages Using the Vapor Compression Cycle
 - 2. AHRI 370 Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment
 - 3. ANSI/ASHRAE 15 Safety Code for Mechanical Refrigeration
 - 4. ANSI/ASHRAE 34 Number Designation and Safety Classification of Refrigerants
 - 5. ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings
 - 6. ANSI/NFPA 70 National Electrical Code (N.E.C.)
 - 7. ASME Boiler and Pressure Vessel Code, Section VIII, Division 1
 - 8. OSHA Occupational Safety and Health Act
 - 9. Manufactured in facility registered to ISO 9001
 - 10. Conform to Intertek Testing Services for construction of chillers and provide ETL/cETL Listed Mark
- B. Factory Run Test: Chiller shall be pressure-tested, evacuated and fully charged with refrigerant and oil, and shall be factory operational run tested with water flowing through the vessel.
- C. Chiller manufacturer shall have a factory trained and supported service organization.
- D. Warranty: Manufacturer shall Warrant all equipment and material of its manufacture against defects in workmanship and material for a period of eighteen (18) months from date of shipment or twelve (12) months from date of start-up, whichever occurs first.

1.4 DELIVERY AND HANDLING

- A. Unit shall be delivered to job site fully assembled with all interconnecting refrigerant piping and internal wiring ready for field installation and charged with refrigerant and oil by the Manufacturer.
- B. Provide protective covering over vulnerable components for unit protection during shipment. Fit nozzles and open ends with plastic enclosures.
- C. Unit shall be stored and handled per Manufacturer's instructions.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Acceptable Manufacturers:
 - 1. Daikin Applied
 - 2. Trane
 - 3. JCI/York.
- B. The Mechanical Contractor shall be responsible for all costs incurred by the General Contractor, Subcontractors, and Consultants to modify the building provisions to accept the furnished alternate equipment.
- C. The equipment manufacturer must specialize in the design and manufacture of the products specified and shall have a minimum of five (5) years of experience in supplying variable speed driven compressor technology on the type of equipment and refrigerant specified.

2.2 GENERAL

- A. Description: Furnish, Install, and Commission factory assembled, charged, and operational run tested air-cooled screw compressor chiller as specified herein and shown on the Drawings. Chiller shall include, but is not limited to: a complete system with multiple independent refrigerant circuits, semi hermetic twin screw compressors, shell and tube hybrid falling film type evaporator, air-cooled condenser, R134a refrigerant, lubrication system, interconnecting wiring, safety and operating controls including capacity controller, control center, motor starting components, and special features as specified herein or required for safe, automatic operation.
- B. Operating Characteristics:
 - 1. Provide low and high ambient temperature control options as required to ensure unit is capable of operation from 0°F to 125°F (-18°C to 52°C) ambient temperature.
 - 2. Provide capacity control system capable of reducing unit capacity to 10% of full load for 2 compressor units. Compressor shall start in unloaded condition. Hot gas bypass shall not be acceptable to meet specified minimum load.
- C. Cabinet: Unit panels, structural elements, control boxes and heavy gauge structural base shall be constructed of painted galvanized steel. All exposed sheet steel shall be coated with baked on powder paint to meet 500-hour salt spray test in accordance with the ASTM B117 standard.

D. Shipping: Unit shall ship in one piece and shall require installer to provide only a single evaporator inlet and outlet pipe connection. If providing chiller model that ships in multiple pieces, bid shall include all the material and field labor costs for factory authorized personnel to install a trim kit to connect the pieces as well as all interconnecting piping and wiring.

2.3 COMPRESSORS

- A. Compressors: Shall be direct drive, semi hermetic, rotary twin-screw type, including: muffler, temperature actuated 'off-cycle' heater, rain-tight terminal box, discharge shut-off service valve, suction shut-off service valve for each compressor, and precision machined cast iron housing. Design working pressure of entire compressor, suction to discharge, shall be 350 psig (24 barg) or higher. Compressor shall be U.L. Recognized.
- B. Compressor Motors: Refrigerant suction-gas cooled accessible hermetic compressor motor, full suction gas flow through 0.006" (0.1524 mm) maximum mesh screen, with inherent internal thermal overload protection and external current overload on all three phases.
- C. Balancing Requirements: All rotating parts shall be statically and dynamically balanced.
- D. Lubrication System: External oil separators with no moving parts, 450 psig (31 barg) design working pressure, and ETL listing shall be provided on the chiller. Refrigerant system differential pressure shall provide oil flow through service replaceable, 0.5 micron, full flow, cartridge type oil filter internal to compressor. Filter bypass, less restrictive media, or oil pump not acceptable.
- E. Capacity Control: Compressors shall start at minimum load. Provide Microprocessor control to command compressor capacity to balance compressor capacity with cooling load.

2.4 REFRIGERANT CIRCUIT COMPONENTS

- A. Refrigerant: R-134a. Classified as Safety Group A1 according to ASHRAE 34.
- B. Each independent refrigerant circuit shall incorporate all components necessary for the designed operation including: liquid line shut-off valve with charging port, low side pressure relief device, removable core filter-drier and sight glass with moisture indicator.
- C. Chiller manufacturer shall provide an independent circuit for each compressor to provide maximum redundancy during chiller operation. If equipment does not have independent circuits per compressor, manufacturer shall provide owner one spare compressor of each unique size.
- D. Discharge lines shall be provided with manual compressor shut-off service valves.

2.5 HEAT EXCHANGERS

- A. Evaporator:
 - 1. Evaporator shall be shell and tube, hybrid falling film type with 2 pass arrangement to optimize efficiency and refrigerant charge. Tubes shall be high-efficiency, internally and externally enhanced type copper tubes with 0.035" (0.89 mm) minimum wall thickness at all intermediate tube supports to provide maximum tube wall thickness at the support area. Each tube shall be roller expanded into the tube sheets providing a leak proof seal, and be individually replaceable. Independent refrigerant circuits shall be provided per compressor.

- Constructed, tested, and stamped in accordance with applicable sections of ASME pressure vessel code for minimum 235 psig (16 barg) refrigerant side design working pressure and 150 psig (10 barg) liquid side design working pressure.
- 3. Water boxes shall be removable to permit tube cleaning and replacement. Water boxes shall include liquid nozzle connections suitable for ANSI/AWWA C-606 couplings, welding, or flanges.
- 4. Provide vent and drain fittings, and thermo-statically controlled heaters to protect to -20°F (-28°C) ambient temperature in off-cycle. A separate power connection for evaporator heaters is required and shall be provided by the Contractor.
- 5. Connection location: Chilled liquid inlet and outlet nozzle connections are located at rear (opposite control panel) end of unit.
- B. Air-cooled Condenser:
 - 1. Condenser coils shall be microchannel type, parallel flow aluminum alloy tubes metallurgically brazed as one piece to enhanced aluminum alloy fins. Condenser coils shall be made of a single material to avoid galvanic corrosion due to dissimilar metals. Tube and fin type condenser coils are an acceptable alternate when tubes and fins are fabricated of the same metal material to avoid galvanic corrosion due to dissimilar metals.: Unit shall include Louvered/Wire Panels: Louvered steel panels on external condenser coil faces, painted to match unit panels. Heavy gauge, welded wire mesh, coated to resist corrosion, around base of machine to restrict unauthorized access.
 - 2. Low Sound Fans with Variable Speed Drives. All fans shall be powered by VSDs. Fans shall provide vertical air discharge from extended orifices. Fans shall be composed of corrosion resistant aluminum hub and glass-fiber-reinforced polypropylene composite blades molded into a low-noise airfoil section. Fan impeller shall be dynamically balanced for vibration-free operation. Fan guards of heavy gauge, PVC (polyvinyl chloride) coated or galvanized steel.
 - 3. Fan Motors: High efficiency, direct drive, 3-phase, insulation class "F", current protected, Totally Enclosed Air-Over (TEAO), with double sealed, permanently-lubricated ball bearings. Open Drip Proof (ODP) fan motors will not be acceptable.

2.6 INSULATION

- A. Material: Closed-cell, flexible, UV protected, thermal insulation complying with ASTM C 534 Type 2 (Sheet) for preformed flexible elastomeric cellular thermal insulation in sheet and tubular form.
- B. Thickness: 3/4" (19mm.)
- C. Thermal conductivity: 0.26 (BTU/HR-Ft2-°F/in) maximum at 75°F mean temperature.
- D. Factory-applied insulation over cold surfaces of liquid chiller components including evaporator shell, water boxes, and suction line. Liquid nozzles shall be insulated by Contractor after pipe installation.
- E. Adhesive: As recommended by insulation manufacturer and applied to 100 percent of insulation contact surface including all seams and joints.

2.7 ACOUSTICAL DATA

- Provide acoustical sound power or sound pressure level data in decibels (dB) at the scheduled eight
 (8) octave band center frequencies. A-weighted sound data alone is not acceptable.
- B. Provide all sound power or sound pressure level data at 100%, 75%, 50%, and 25% load.

- C. Supplied equipment shall not exceed scheduled sound power or sound pressure level data at any load point. The mechanical Contractor shall be responsible for any additional costs associated with equipment deviation.
- D. Acoustical performance ratings shall be in accordance with AHRI Standard 370.

2.8 POWER AND ELECTRICAL REQUIREMENTS

- A. Power/Control Panel:
 - 1. Factory installed and wired NEMA 3R, powder painted steel cabinets with tool lockable, hinged, latched, and gasket sealed outer doors equipped with wind struts for safer servicing. Provide main power connection(s), compressor starters and fan motor contactors, current overloads, and factory wiring.
 - 2. Panel shall include control display access door.
- B. Single Point Power:
 - 1. Provide single point power connection to chiller, shall be 3 phase of scheduled voltage.
 - 2. Single Point Disconnect: A non-fused disconnect and lockable external handle shall be provided at the point of incoming single point connection for field connection, interconnecting wiring to the compressors, and isolating the unit power voltage for servicing. Separate external fusing must be supplied, by others, in the incoming power wiring which must comply with local codes.
- C. Control Transformer: Power panel shall be supplied with a factory mounted and wired control transformer that will supply all unit control voltage from the main unit power supply. Transformer shall utilize scheduled line voltage on the primary side and provide 115V/1Ø on secondary.
- D. Short Circuit Withstand Rating of the chiller electrical enclosure shall be (460V: 50,000 Amps.) Rating shall be published in accordance with UL508.
- E. Motor Starters: Motor starters shall be Variable Frequency Drive type with zero electrical inrush current. Wye-Delta, Solid State, and Across the Line type starters will not be acceptable.
- F. Power Factor:
 - 1. Provide equipment with power factor correction capacitors as required to maintain a displacement power factor of 95% at all load conditions.
 - 2. The installing contractor is responsible for additional cost to furnish and install power factor correction capacitors if they are not factory mounted and wired.
- G. All exposed power wiring shall be routed through liquid-tight, UV-stabilized, non-metallic conduit.
- H. Supplied equipment shall not exceed scheduled Minimum Circuit Ampacity (MCA). The mechanical Contractor shall be responsible for any additional costs associated with equipment deviation.

2.9 CONTROLS

A. General:

- 1. Provide automatic control of chiller operation including compressor start/stop and load/unload, anti-recycle timers, condenser fans, evaporator pump, evaporator heater, unit alarm contacts and run signal contacts.
- 2. Chiller shall automatically reset to normal chiller operation after power failure.
- 3. Unit operating software shall be stored in non-volatile memory. Field programmed set points shall be retained in lithium battery backed regulated time clock (RTC) memory for minimum 5 years.
- 4. Alarm contacts shall be provided to remote alert for any unit or system safety fault.
- B. Display and Keypad:
 - 1. Provide minimum 80 character liquid crystal display that is both viewable in direct sunlight and has LED backlighting for nighttime viewing. Provide one keypad and display panel per chiller.
 - 2. Display and keypad shall be accessible through display access door without opening main control/electrical cabinet doors.
 - 3. Display shall provide a minimum of unit setpoints, status, electrical data, temperature data, pressures, safety lockouts and diagnostics without the use of a coded display.
 - 4. Descriptions in English (or available language options), numeric data in English (or Metric) units.
 - 5. Sealed keypad shall include unit On/Off switch.
- C. Programmable Setpoints (within Manufacturer limits): Display language, chilled liquid cooling mode, local/remote control mode, display units mode, system lead/lag control mode, remote temperature reset, remote current limit, remote sound limit, low ambient temperature cutout enable/disable, leaving chilled liquid setpoint and range, maximum remote temperature reset.
- D. Display Data: Chilled liquid leaving and entering temperatures; outside ambient air temperature; lead system; evaporator pump status; active remote control; compressor suction, discharge, and oil pressures per refrigerant circuit; compressor discharge, motor, and oil temperatures per refrigerant circuit; saturation temperatures per refrigerant circuit; compressor speed; condenser fan status; condenser subcooling temperature; condenser drain valve percentage open; compressor capacity in percentage of Full Load Amps; compressor number of starts; run time; operating hours; evaporator heater status; history data for last ten shutdown faults; history data for last 20 normal (non-fault) shutdowns.
- E. Predictive Control Points: Unit controls shall avoid safety shutdown when operating outside design conditions by optimizing the chiller controls and cooling load output to stay online and avoid safety limits being reached. The system shall monitor the following parameters and maintain the maximum cooling output possible without shutdown of the equipment: motor current, suction pressure, discharge pressure, starter internal ambient temperature, and starter baseplate temperature.
- F. System Safeties: Shall cause individual compressor systems to perform auto-reset shut down if: high discharge pressure or temperature, low suction pressure, low motor current, high/low differential oil pressure, low discharge superheat, high motor temperature, system control voltage.
- G. Unit Safeties: Shall be automatic reset and cause compressors to shut down if: high or low ambient temperature, low leaving chilled liquid temperature, under voltage, flow switch operation. Contractor shall provide flow switch and wiring per chiller manufacturer requirements.
- H. Manufacturer shall provide any controls not listed above, necessary for automatic chiller operation. Mechanical Contractor shall provide field control wiring necessary to interface sensors to the chiller control system.

2.10 ACCESSORIES AND OPTIONS

- A. Some accessories and options supersede standard product features. All options are factory-mounted unless otherwise noted.
- B. CONTROLS OPTIONS:
 - 1. Gateway: Provides communication for Building Automation Systems, including BACnet (MS/TP), Modbus, N2, and LON. (Field Commissioned by BAS Manufacturer)
- C. GENERAL OPTIONS:
 - 1. Flow Switch: Vapor proof SPDT, NEMA 3R switch, 150 psig (10.3 barg), -20°F to 250°F (-28.9°C to 121.1°C). (Field Mounted by Contractor)
 - 2. Vibration Isolation (All Options Field Mounted by Contractor):
 - a. Provide 1" Deflection Spring Isolators: Level adjustable, spring and cage type isolators for mounting under the unit base rails

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Rig and Install in full accordance with Manufacturer's requirements, Project drawings, and Contract documents.
- B. Location: Locate chiller as indicated on drawings, including cleaning and service maintenance clearance per Manufacturer instructions. Adjust and level chiller on support structure.
- C. Components: Installing Contractor shall provide and install all auxiliary devices and accessories for fully operational chiller.
- D. Electrical: Coordinate electrical requirements and connections for all power feeds with Electrical Contractor.
- E. Controls: Coordinate all control requirements and connections with Controls Contractor.
- F. Finish: Installing Contractor shall paint damaged and abraded factory finish with touch-up paint matching factory finish.

3.2 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain chiller. Video training sessions.

END OF SECTION 23 64 23

SECTION 23 73 13 - MODULAR OUTDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Variable-air-volume, multizone air-handling units. AHU-1, 2, 3, 5, 6

1.2 ACTION SUBMITTALS

- A. Product Data: For each air-handling unit indicated.
 - 1. Unit dimensions and weight.
 - 2. Cabinet material, metal thickness, finishes, insulation, and accessories.
 - 3. Fans:
 - a. Certified fan-performance curves with system operating conditions indicated.
 - b. Certified fan-sound power ratings.
 - c. Fan construction and accessories.
 - d. Motor ratings, electrical characteristics, and motor accessories.
 - 4. Certified coil-performance ratings with system operating conditions indicated.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Filters with performance characteristics.
- B. Delegated-Design Submittal: For vibration isolation indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

- C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.
- D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- E. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- F. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 - 1. Carrier
 - 2. Daikin Applied
 - 3. Trane
 - 4. JCI/York

PART 3 - PRODUCTS

- A. Units are designed to match exact structural and architectural openings in the building. Match unit drop locations and do not exceed unit heights indicated on the plans.
- B. Provide factory assembled air handling unit in configuration as indicated on drawings. Unit shall include all specified components installed at the factory (unless otherwise specified). Field fabrication of units and their components will not be acceptable. The included components shall include at a minimum the following items:

C. RETURN FAN SECTION

Inverter Duty motor with belt drive Fan for use with VFD	х
Belt guard	
	Х
Inlet Guard	
	Х
Door with window	
	Х
Light	
	Х
Spring isolators on fan with 2" Deflection	
	Х

D. MIXING AIR SECTION WITH:

Insulated outdoor air damper	
	Х
Return air damper	
	Х
Door with window	
	Х
Light	
	Х
100% Economizer section	
	Х

E. PRE FILTER SECTION

MERV 8 pleated filters	
	Х
Magnahelic pressure gage across filter	
section.	Х

F. HEATING COIL SECTION

Coil rack for coil removal	
	Х
Access panel for removal of coils	
	Х
Door with window	
	Х
Light	
	Х

G. CHILLED WATER COOLING COIL SECTION

Stainless steel drain pan	
·	Х
Access panel for removal of coils	
	Х
Coil rack for coil removal	
	Х
Door with Window	
	Х
Light	
-	Х

H. SUPPLY FAN

Inverter Duty motor with belt drive Fan for use with VFD	x
Spring isolators on fan with 2" Deflection	X
	Х
Belt Guard	
	Х
Inlet Guard	
	Х

Door with window	
	Х
Light	
	Х

3.2 UNIT CONSTRUCTION

- A. Air handlers are tested and rated in accordance with ARI standard 430 and are ETL listed.
- B. Unit casing will consist of a structural frame and insulated roof, wall, and floor panels.
- C. Unit shall be Galvanized steel with factory-painted finish, provide standard paint chart (minimum 5 varying colors) for color selection.
- D. Roof slope shall be provided as required for outdoor units. Slope roof to prevent water pooling and provide positive drainage.
- E. Removal of wall panels will not affect structural integrity of units.
- F. Unit casing will be insulated with spray injected foam to achieve a minimum thermal resistance of R13 hr-ft²-°F/BTU. Insulation application will meet the requirements of NFPA 90A
- G. Insulation system will be resistant to mold growth in accordance with a standardized test method such as UL 181 or ASTM C 1338
- H. Unit will conform to ASHRAE Standard 111 Class 6 for casing leakage no more than 1% of design airflow at 1.25 times design static pressure up to a maximum of +8 inches w.g. in positive pressure sections and -8 inches w.g. in negative pressure sections.
- I. Wall panels and access doors will deflect no more than L/240 when subjected to 1.5 times design static pressure up to a maximum of +8 inches w.g. in positive pressure sections and -8 inches w.g. in negative pressure sections. 'L' is the panel-span length and 'L/240' is the deflection at panel midpoint.
- J. Unit will have double wall, 2" insulated panels for walls, roof, and floor. Exterior skin will be galvanized sheet steel. Individual segments will have galvanized sheet steel, stainless sheet steel, or perforated galvanized interior liner, as described in performance specifications.
- K. Provide panels with optional perforated liner in the fan section and other sections. As shown on the drawings. Interior liner will be perforated galvanized. Minimum perforated panel thermal resistance (R-Value) will be R11 hr-ft²-°F/BTU.
- L. Floor panels will be double wall construction, designed to provide at most L/240 deflection when subjected to a 300 lb. load at mid-span.
- M. Double wall access doors will be provided on sections as shown on product drawings.
- N. Stainless steel hinges permit a 180° door swing.
- O. Access door will be of the same material type as exterior/interior casing.
- P. Access door latches will use a roller cam latching mechanism.

- 1. View ports will be double-pane tempered glass.
- Q. Floor plate is constructed of .125" (3.17 mm) aluminum tread plate, or welded steel with 2 layers of epoxy paint with traction additive.
- R. Primary and auxiliary drain pans will be double wall with an insulation R-value of 6.25 hr-ft²-°F/(BTUin).
 - 1. Drain pans comply with the guidelines of ASHRAE 62.
 - a. Drain pans will be double sloped at least 1/8" per foot, and have no horizontal surfaces.
 - b. Drain connection material will be the same as drain pan.
 - c. Drain pans drain to one point.
 - d. Drain connections will be welded to drain pans
 - e. Drain pans will have at least 1" clearance between pan and coil supports.
- S. Air Handlers are located outdoors. Provide with factory painting including prime coat and two layers of epoxy paint.
- 3.3 HEATING AND COOLING COIL SECTIONS FOR ALL UNITS
 - A. On standard base rail units, coils are accessible for service and cleaning. The coil headers and return bends are fully enclosed within unit casing. The air handling unit is furnished with coil connections that extend a minimum of 5" (127 mm) beyond unit casing for easy installation. Drain and vent connections are located on the coil connections. If not factory packaged, Contractor must supply all coil connection grommets and sleeves. Coils are removable through side panels of unit without removal and disassembly of entire unit.
 - B. Coils are ARI certified and Underwriters Laboratories, Inc. listed. Capacities, pressure drops, and selection procedures are in accordance with ARI 410.

3.4 WATER COILS FOR ALL UNITS

- A. Fins have a minimum thickness of 0.0075" aluminum plate construction. Fins have full drawn collars to provide a continuous surface cover over the entire tube for maximum heat transfer. Tubes are constructed of 5/8" OD seamless copper mechanically expanded into the fins to provide a continuous primary to secondary compression bond over the entire finned length for maximum heat transfer rates. Bare copper tubes are not visible between fins.
- B. Water coils provided with round seamless 5/8" OD copper tubes 0.020" nominal tube wall thickness, expanded into fins. All joints brazed.
- C. Water coils are provided with headers of seamless copper tubing with intruded tube holes that permit expansion and contraction without creating undue stress or strain. The casing is formed channel frame of galvanized. Coil connections are carbon steel with size provided by manufacturer based upon the most efficient coil circuiting. Coil vents and drains are provided on the coil connection outside the unit casing. Vent connections provided at the highest point to assure proper venting. Drain connections provided at the lowest point to insure drainage and prevent freeze-up.

3.5 SUPPLY/RETURN FANS FOR AHU FOR ALL UNITS

- A. Single width, single inlet, airfoil fan (Plenum fan) is dynamically as an assembly. Plenum fans are available in both belt driven and direct driven configurations. Maximum fan RPM is always below the first critical fan speed. Plenum fans with variable inlet vanes are controlled with a center hub linkage. Vanes are fabricated from steel with a baked enamel finish capable of withstanding entering air temperature up to 200° F. The inlet vane actuating mechanism is permanently lubricated and interconnected by a solid steel shaft through oil impregnated bronze bushings mounted in the fan housing.
- B. Drive: The fan and motor are internally mounted on a steel base. The motor base can be slid out the side of unit if removal is required. Access is provided to motor, drive, and bearings through a hinged access door.
- C. Mounting: Fan and motor assemblies can be provided with 2" internally mounted spring isolators. Provide seismic snubbers. Fan base shall be fabricated to allow addition of concrete to fan base. Springs shall be selected for addition of concrete.
- D. Bearings: Fan bearings are sealed, self-aligning, grease lubricated, ball bearings. The extended copper lubrication lines are furnished on the access side of unit. The grease fittings are attached to fan base assembly, near the access door.
- E. The bearing load rating is computed in accordance with AFBMA ANSI Standards, L-50 life at 400,000 hours- all belt drive airfoil plenum fans. It is a heavy-duty pillow block type, self-aligning, grease-lubricated ball bearing.
- F. The V-belt drive has cast iron or steel sheaves, dynamically balanced, and bored to fit shafts and keyed. Fixed sheaves, matched belts, and drive are rated as recommended by manufacturer. The standard drive service factor is 1.1 (7 1/2 HP & smaller) or 1.3 (10 HP & larger) times fan brake horsepower.
- G. The shaft is solid, hot rolled steel, ground and polished, keyed to the shaft, and protectively coated with lubricating oil.
- H. Motors for supply and return fans to be EPACT premium efficiency inverter duty rated motors for VFD connection.

3.6 PLENUMS FOR ALL UNITS

- A. Plenum sections located are shown on the plans. The plenum contains a top, bottom, side, or end opening to permit air to enter or leave the unit.
- B. Plenum sections shall be provided with perforated metal liner over fiberglass insulation for noise absorption.
- C. Access doors are double wall and constructed of galvanized steel and flush mounted. Fabricated with gasketing between door and frame channel, latch and handle assembly (VENTLOCK HATCH OR EQUAL).

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

3.7 FLAT AND ANGULAR FILTERS FOR ALL UNITS

A. The filter section includes filter racks, and hinged and latching access doors on either, or both sides of the section for side loading and removal of filters. Flat and angular filter arrangements are provided with 2" deep pleated panel filters. Filter media is U.L. Class 2, and tested according to U.L. Standard 900.

3.8 100% ECONOMIZER FOR ALL UNITS

- A. Economizer section provided with factory mounted low leak hollow core airfoil blade, outside air and return air dampers, and exhaust air damper. Dampers constructed of galvanized steel in galvanized frame. Dampers are fully gasketed and have continuous vinyl seals between damper blades. Stainless steel end seals are provided along the end of the dampers. Linkage is provided when the return air and outside air dampers are both sized for full airflow. The return air and outside air dampers are hold together. The exhaust damper will require a separate actuator. Return air and outside air dampers of different sizes are not linked together.
- B. The outside air, return air, and exhaust air damper leakage rate is less than two tenths of one percent leakage at 2 inches static pressure differential. The leakage rate is tested in accordance with AMCA Standard 500.

3.9 ACCESSORIES FOR ALL UNITS

- A. EC to provide smoke detectors in Return section of unit.
- B. Provide magnahelic gages across filter section.
- C. Provide manufacturer's curb for roof mounting. Slope curb to match roof structure.

3.10 ELECTRICITY, POWER PACKAGE AND CONTROLS OPTIONS FOR ALL UNITS

- A. Lights shall be wired to a light switches.
- B. Lighting shall be wired to a single 120 volt point, terminating at a designated junction box mounted on the air handling unit.
- C. Motors shall be wired to individual junction boxes located outside their respective fan sections for connection to VFD/Disconnect (by others).
- D. Motors shall be wired for variable frequency drives (by others).
- E. All components shall be UL approved.

3.11 SOURCE QUALITY CONTROL FOR ALL UNITS

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

- B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."
- C. Water Coils: Factory tested to 300 psig according to ARI 410 and ASHRAE 33.

PART 4 - EXECUTION FOR ALL UNITS

4.1 INSTALLATION

- A. Equipment Mounting: Install air-handling units without vibration isolation devices. Secure units to manufacturer's curb.
- B. Arrange installation of units to provide access space around air-handling units for service and maintenance.
- C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.
- D. Comply with requirements for piping specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- E. Install piping adjacent to air-handling unit to allow service and maintenance.
- F. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.
- G. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- H. Hot Water Piping: Comply with applicable requirements in Division 23 Section "Hydronic Piping." Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.
- I. Connect duct to air-handling units with flexible connections. Comply with requirements in Division 23 Section "Air Duct Accessories."

END OF SECTION 23 73 13

SECTION 23 73 13.13 - HEATING AND VENTILATING UNITS

PART 1 - GENERAL

1.1 SECTION INCLUDES

A. Outdoor heating and ventilating units.

1.2 SUBMITTALS

- A. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, and electrical characteristics and connection requirements. Computer generated fan curves for each air handling unit shall be submitted with specific design operating point noted. A computer generated psychometric chart shall be submitted for each cooling coil with design points and final operating point clearly noted. Sound data for discharge, radiated and return positions shall be submitted by octave band for each unit.
- B. Product Data:
 - 1. Provide literature that indicates dimensions, weights, capacities, ratings, fan performance, and electrical characteristics and connection requirements.
 - 2. Provide data of filter media, filter performance data, filter assembly, and filter frames.
- C. Manufacturer's Installation Instructions.

1.3 QUALIFICATIONS

A. Manufacturers specializing in manufacturing Air Handling Units specified in this section must prove minimum five years documented experience and issue a complete catalog on total product.

1.4 SAFETY AGENCY LISTED & CERTIFICATION

- A. Air handling units shall be cETLus safety listed that conforms to UL Standard 1995 and CAN/CSA Standard C22.2 No. 236. Units shall be accepted for use in New York City by the Department of Building, MEA 342-99-E.
- Air handler furnished with double width, double inlet (DWDI) and/or plenum fans shall be certified in accordance with the central station air handling units certification program, which is based on ARI 430. (NOTE: Above does not apply to fan array)
- C. Air handling unit water heating coils shall be certified in accordance with the forced circulation air cooling and air heating coils certification program, which is based on ARI Standard 410.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect and handle products to site.

- B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids. Inspect for damage.
- C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. The following manufacturers are approved for use. No substitutions will be permitted.
 - 1. Carrier
 - 2. Daikin Applied
 - 3. York/JCI
 - 4. Trane

2.2 GENERAL DESCRIPTION

- A. Configuration: Fabricate as detailed on drawings.
- B. Performance: Conform to ARI 430. See schedules on prints.
- C. IBC Certification
 - 1. All components included herein are designed, manufactured and independently tested, rated and certified to meet the seismic compliance standards of the 2009 International Building Code. Components designated for use in systems that are life safety, toxic, high hazard, combustible or flammable shall meet the on line, anchorage and load path requirements for life safety as defined in IBC sections 1621.1.6, 1621.3.3, 1707.7.2, and IBC Commentary, Volume II, section 16 21 .1.6, IBC notes pertaining to the release of hazardous material. All components used as part of a system other than the above shall meet as a minimum, all load path and anchorage standards for components as outlined in IBC section 16 21 .3.3 & 1707.7.2.
 - 2. All completed component assemblies shall be clearly labelled for field inspection.
 - 3. Certificate of Compliance from the Independent Certifying Agency clearly indicating that components supplied on this project are included in the component manufacturer's Certificate of Compliance.
 - 4. Clear installation instructions including all accessory components that are part of the overall component installation.

2.3 UNIT CONSTRUCTION

- A. Fabricate unit with 16 gauge channel posts and panels secured with mechanical fasteners. All panels, access doors, and ship sections shall be sealed with permanently applied bulb-type gasket. Shipped loose gasketing is not allowed.
 - 1. Panels and access doors shall be constructed as a 2-inch (50-mm) nominal thick; thermal broke double wall assembly, injected with foam insulation for an R-value of not less than R-13.

The outer panel shall be constructed of G90 galvanized steel. The inner liner shall be constructed of G90 galvanized steel.

- 2. Panel deflection shall not exceed L/240 ratio at 125% of design static pressure, maximum positive or negative 8inches of static pressure. Deflection shall be measured at the midpoint of the panel height.
- 3. The casing leakage rate shall not exceed .5 cfm per square foot of cabinet area at 6 inches of negative static pressure or 5 inches of positive static pressure 1% of supply air volume at design static pressure up to positive or negative 8 inches.
- 4. Door latches to interface both horizontally and in compression of the gasket to maximize the door sealing strength.
- 5. Module to module assembly shall be accomplished with an overlapping, full perimeter, insulated, internal splice joint sealed with bulb type gasketing on both mating modules to minimize on-site labor and meet indoor air quality standards.
- 6. A sound baffle shall be secured to the inner liner and constructed of G90 galvanized perforated steel filled with 3 lb. per cu ft. density, neoprene coated, glass fiber insulation.
- 7. Entire unit shall have a manufacturer's curb.
- B. Access Doors shall be flush mounted to cabinetry, with minimum of two six inch long stainless steel piano-type hinges, latch and full size (4.5" minimum) handle assembly (provide inspection window for fan section). Door shall swing outward for unit sections under negative pressure (inward for unit sections under positive pressure). Doors limited from swinging inward (such as side access filter sections) on positive pressure sections, shall have a secondary latch to relieve pressure and prevent injury upon access.
- C. Construct drain pans from [microbial resistant coated galvanized steel with cross break and double sloping pitch to drain connection. Provide drain pans under cooling coil section [fan section]. Drain connection centerline shall be a minimum of 3" above the base rail to aid in proper condensate trapping. Drain connections that protrude from the base rail are not acceptable. There must be a full 2" thickness of insulation under drain pan.

2.4 SUPPLY / RETURN FANS

- A. Provide DWDI airfoil supply fan(s). Fan assemblies including fan, motor and sheaves shall be dynamically balanced by the manufacturer on all three planes and at all bearing supports. Manufacturer must ensure maximum fan RPM is below the first critical speed.
- B. Bearings shall be self-aligning, grease lubricated, ball or roller bearings with extended copper lubrication lines to access side of unit. Grease fittings shall be attached to the fan base assembly near access door. If not supplied at the factory, contractor shall mount copper lube lines in the field.
- C. Fan and motor shall be mounted internally on a steel base. Factory mount motor on slide base that can be slid out the side of unit if removal is required. Provide access to motor, drive, and bearings through hinged access door. Fan and motor assembly shall be mounted on [rubber-in-shear vibration type isolators inside cabinetry. 2" deflection spring vibration type isolators inside cabinetry.

2.5 BEARINGS AND DRIVES

- A. Bearings: Basic load rating computed in accordance with AFBMA ANSI Standards, L-50 life at 200,000 hours all DWDI fans heavy duty pillow block type, self-aligning, grease-lubricated ball bearings.
- B. Shafts shall be solid, hot rolled steel, ground and polished, keyed to shaft, and protectively coated with lubricating oil. Hollow shafts are not acceptable.

C. V-Belt drives shall be cast iron or steel sheaves, dynamically balanced, bored to fit shafts and keyed. Variable and adjustable pitch sheaves selected so required RPM is obtained with sheaves set at midposition and rated based on motor horsepower. Contractor to furnish fixed sheaves at final RPM as determined by balancing contractor. Minimum of 2 belts shall be provided on all fans with 10 HP motors and above. Standard drive service factor shall be [1.1 S.F. (for 1/4 HP – 7.5 HP)] [1.3 S.F. (for 10HP and larger)], calculated based on fan brake horsepower.

2.6 ELECTRICAL

- A. The air handler(s) shall be ETL and ETL-Canada listed by Intertek Testing Services, Inc. Units shall conform to bi-national standard ANSI/UL Standard 1995/CSA Standard C22.2
- B. Wiring Termination: Provide terminal lugs to match branch circuit conductor quantities, sizes, and materials indicated. Enclosed terminal lugs in terminal box sized to NFPA 70.
- C. Air handler manufacturer shall provide and mount a 120V control transformer.
- D. Manufacturer must provide ASHRAE 90.1 Energy Efficiency equation details for individual equipment to assist Building Engineer for calculating system compliance.

2.7 HEATING COIL SECTIONS

- A. Provide access to coils from connection side of unit for service and cleaning. Enclose coil headers and return bends fully within unit casing. Unit shall be provided with coil connections that extend a minimum of 5" beyond unit casing for ease of installation. Drain and vent connections shall be provided exterior to unit casing. Coil connections must be factory sealed with grommets on interior and exterior and gasket sleeve between outer wall and liner where each pipe extends through the unit casing to minimize air leakage and condensation inside panel assembly. If not factory packaged, Contractor must supply all coil connection grommets and sleeves. Coils shall be removable through side and/or top panels of unit without the need to remove and disassemble the entire section from the unit.
 - 1. Identify fin, tube & casing material type and thickness.
 - 2. Show coil weights (shipping & operating).
 - 3. State air and fluid flow amounts with its associated pressure drops. For steam coils, indicate steam pressure and condensate load.
 - 4. Indicate entering & leaving air and water temperatures. For refrigerant coils, indicate saturated suction temperature (SST).

B. Water Coils:

- Certification Acceptable water coils are to be certified in accordance with ARI Standard 410 and bear the ARI label. Coils exceeding the scope of the manufacturer's certification and/or the range of ARI's standard rating conditions will be considered provided the manufacturer is a current member of the ARI Air-Cooling and Air-Heating Coils certification programs and that the coils have been rated in accordance with ARI Standard 410. Manufacturer must be ISO 9002 certified.
- Headers shall consist of seamless copper tubing to assure compatibility with primary surface. Headers to have intruded tube holes to provide maximum brazing surface for tube to header joint, strength, and inherent flexibility. Header diameter should vary with fluid flow requirements.

- 3. Fins shall have a minimum thickness of 0.0075'copper plate construction. Fins shall have full drawn collars to provide a continuous surface cover over the entire tube for maximum heat transfer. Tubes shall be mechanically expanded into the fins to provide a continuous primary to secondary compression bond over the entire finned length for maximum heat transfer rates. Bare copper tubes shall not be visible between fins.
- 4. Coil tubes shall be 5/8 inch (16mm) OD seamless copper, 0.025"nominal tube wall thickness, expanded into fins, brazed at joints. Soldered U-bends shall be provided to minimize the effects of erosion and premature failure having a minimum tube wall thickness of .025".
- 5. Coil connections shall be O.D. sweat copper with connection size to be determined by manufacturer based upon the most efficient coil circuiting. Vent and drain fittings shall be furnished on the connections, exterior to the air handler. Vent connections provided at the highest point to assure proper venting. Drain connections shall be provided at the lowest point to insure complete drainage and prevent freeze-up.
- 6. Coil casings shall be a formed channel frame of galvanized steel. Water heating coils, 1 & 2 row only (sans 5M type) shall be furnished as uncased to allow for thermal movement and slide into a pitched track for fluid drainage.

2.8 PARTICULATE FILTERS

- A. Filter section with filter racks and guides with hinged and latching access doors on either, or both sides, for side loading and removal of filters.
- B. Filter media shall be UL 900 listed, Class I or Class II.
- C. Angle arrangement with 4" deep pleated panel filters.
- D. Manufacturer shall supply minihelic gauge to read pressure drop across the filter bank for scheduling filter replacement. Design shall be equal to a Dwyer Minihelic 2 and be recessed into the cabinet to minimize chances for damage during shipment and installation.

2.9 ADDITIONAL SECTIONS

- A. Mixing box section shall be provided with or without factory mounted low leak airfoil blade outside and return air dampers of galvanized steel in a galvanized frame. Dampers shall be hollow core airfoil blades, fully gasketed and have continuous vinyl seals between damper blades. Dampers shall have stainless steel jamb seals along end of dampers. Linkage and ABS plastic end caps shall be provided when return and outside air dampers sized for full airflow. Return and outside air dampers of different sizes must be driven separately.
- B. Economizer section shall be provided with factory mounted low leak hollow core airfoil blade outside air and return air dampers, and exhaust damper. Dampers shall be constructed of galvanized steel in a galvanized frame. Outside and return dampers fully gasketed. Continuous vinyl seals between damper blades. Stainless steel end seals along end of dampers. Linkage and ABS plastic end caps provided when return and outside air dampers are the same size. Return and outside air dampers of different sizes or very large dampers and exhaust dampers must be driven separately.
- C. Inlet/Discharge plenum section shall be provided as the first/last section in the direction of airflow. The plenum shall provide single or multiple openings (see drawings).

2.10 DAMPERS

A. Damper Leakage: Leakage rate shall be less than two tenths of one percent leakage at 2 inches static pressure differential. Leakage rate tested in accordance with AMCA Standard 500.

2.11 CONTROLS

A. By DDC Controls Contractor. See 230923 and 230993.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install in accordance with manufacturer's Installation & Maintenance instructions.

3.2 ENVIRONMENTAL REQUIREMENTS

A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.

3.3 EXTRA MATERIALS

A. Provide one set for each unit of fan belts and filters.

END OF SECTION 23 73 13.13
SECTION 23 74 13 - PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

- A. This spec applies to AHU-4.
- B. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories:
 - 1. Direct-expansion cooling.
 - 2. Hydronic heating coils.
 - 3. Economizer outdoor- and return-air damper section.
 - Roof curbs.

1.2 DEFINITIONS

- A. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- B. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- C. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, centralstation air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
- D. Supply-Air Fan: The fan providing supply-air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
- E. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
- F. VVT: Variable-air volume and temperature.

1.3 PERFORMANCE REQUIREMENTS

1.4 ACTION SUBMITTALS

- A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

- 1. Wiring Diagrams: Power, signal, and control wiring.
- 1.5 INFORMATIONAL SUBMITTALS
 - A. Field quality-control test reports.
 - B. Warranty.
- 1.6 CLOSEOUT SUBMITTALS
 - A. Operation and maintenance data.
- 1.7 QUALITY ASSURANCE
 - A. ARI Compliance:
 - 1. Comply with ARI 203/110 and ARI 303/110 for testing and rating energy efficiencies for RTUs.
 - 2. Comply with ARI 270 for testing and rating sound performance for RTUs.
 - B. ASHRAE Compliance:
 - 1. Comply with ASHRAE 15 for refrigerant system safety.
 - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 - 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
 - C. LEED Prerequisite EA 2 requires minimum efficiency equal to requirements in ASHRAE/IESNA 90.1.
 - D. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
 - E. NFPA Compliance: Comply with NFPA 90A and NFPA 90B.
 - F. If retaining first paragraph below, delete compliance with ASHRAE 15 in subparagraph above and compliance with NFPA 90A or NFPA 90B in paragraph above. Some manufacturers test and label their equipment according to UL 1995, which requires compliance with ASHRAE 15, NFPA 90A, and NFPA 90B.
 - G. UL Compliance: Comply with UL 1995.
 - H. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.8 WARRANTY

A. When warranties are required, verify with Owner's counsel that special warranties stated in this Article are not less than remedies available to Owner under prevailing local laws. Coordinate with Section 01 60 00 "Product Requirements."

- B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than 10 years from date of Substantial Completion.
 - 2. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Provide a product equal to the Daikin/McQuay Rebel by of the following manufacturer's
 - 1. Aaon.
 - 2. Carrier.
 - 3. Daikin Applied.
 - 4. JCI/York.
 - 5. Trane.

2.2 CASING

- A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 - 1. If Project has more than one RTU and the configurations, materials, and thicknesses for each are different, delete subparagraph below and schedule casing materials and thicknesses on Drawings. See sample schedule in the Evaluations.
 - 2. Exterior Casing Thickness: 0.052 inch thick.
- C. Inner Casing Fabrication Requirements:
 - 1. Inside Casing: Galvanized steel liner, 0.034 inch thick.
- D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - 1. Thickness: 1" R-7 injected foam.
- E. Condensate Drain Pans: Formed sections of stainless-steel sheet, a minimum of 2 inches deep, and complying with ASHRAE 62.1.
 - 1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
 - 2. Drain Connections: Threaded nipple both sides of drain pan.
 - 3. Pan-Top Surface Coating: Corrosion-resistant compound.

F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.3 FANS

- A. Direct-Driven Supply-Air Fans: SWSI Airfoil fans,; with permanently lubricated, ECM motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
- B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.
- C. Relief-Air Fan: SWSI Airfoil fans,; with permanently lubricated, ECM motor resiliently mounted in the fan inlet. Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
- D. Fan Motor: Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2.4 COILS

- A. Supply-Air Refrigerant Coil:
 - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 - 2. Coil Split: Interlaced.
 - 3. Condensate Drain Pan: Stainless steel formed with pitch and drain connections complying with ASHRAE 62.1.
- B. Outdoor-Air Refrigerant Coil:
 - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
- C. Hydronic Heating Coils:
 - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.

2.5 REFRIGERANT CIRCUIT COMPONENTS

- A. Number of Refrigerant Circuits: One.
- B. Compressors: combination of Hermetic, scroll and Inverter scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
 - 1. If inverter scroll compressors are not available, provide hot gas bypass and compressor staging to provide discharge air temperature control adequate for this application.
- C. Refrigeration Specialties:
 - 1. Refrigerant: R-407C or R-410A.

- 2. Expansion valve with replaceable thermostatic element.
- 3. Refrigerant filter/dryer.
- 4. Manual-reset high-pressure safety switch.
- 5. Automatic-reset low-pressure safety switch.
- 6. Minimum off-time relay.
- 7. Automatic-reset compressor motor thermal overload.
- 8. Brass service valves installed in compressor suction and liquid lines.

2.6 AIR FILTRATION

- A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Pleated: Minimum 90 percent arrestance, and MERV 7.

2.7 DAMPERS

- A. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously.
 - 1. Damper Motor: Modulating with adjustable minimum position.
 - 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IESNA 90.1, with bird screen and hood.

2.8 ELECTRICAL POWER CONNECTION

A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.9 CONTROLS

- A. Control equipment sequence of operation are specified in Section 23 09 93.11 "Sequence of Operations for HVAC DDC."
- B. DDC Controller:
 - 1. Controller shall have volatile-memory backup.
 - 2. Safety Control Operation:
 - a. Fire Alarm Control Panel Interface: Provide control interface to coordinate with operating sequence described in Section 28 31 11 "Digital, Addressable Fire-Alarm System" and Section 28 31 12 "Zoned (DC Loop) Fire-Alarm System."
 - 3. Scheduled Operation: Occupied and unoccupied periods on seven 365-day clock with a minimum of four programmable periods per day.
 - 4. Unoccupied Period:
 - a. Heating Setback: 10 deg F.

- b. Cooling Setback: System off.
- c. Override Operation: Two hours.
- 5. Supply Fan Operation:
 - a. Occupied Periods: Run fan continuously.
 - b. Unoccupied Periods: Cycle fan to maintain setback temperature.
- 6. Refrigerant Circuit Operation:
 - a. Occupied Periods: Cycle or stage compressors to match compressor output to cooling load to maintain discharge temperature. Cycle condenser fans to maintain maximum hot-gas pressure.
 - b. Unoccupied Periods: Compressors off.
- 7. Hydronic Heating-Coil Operation:
 - a. Occupied Periods: Modulate coil to maintain discharge temperature.
 - b. Unoccupied Periods: Open coil to maintain setback temperature.
- 8. Economizer Outdoor-Air Damper Operation:
 - a. Occupied Periods: Open to fixed minimum intake, and maximum 100 percent of the fan capacity to comply with ASHRAE Cycle II. Controller shall permit air-side economizer operation when outdoor air is less than 60 deg F. Use outdoor-air temperature to adjust mixing dampers. During economizer cycle operation, lock out cooling.
 - b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.
 - c. Outdoor-Airflow Monitor: Accuracy maximum plus or minus 5 percent within 15 and 100 percent of total outdoor air. Monitor microprocessor shall adjust for temperature, and output shall range from 4 to 20 mA.
- C. Interface Requirements for HVAC Instrumentation and Control System:
 - 1. Interface relay for scheduled operation.
 - 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 - 3. Provide BACnet or LonWorks compatible interface for central HVAC control workstation for the following:
 - a. Adjusting set points.
 - b. Monitoring supply fan start, stop, and operation.
 - c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature.
 - d. Monitoring occupied and unoccupied operations.

2.10 ACCESSORIES

- A. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- B. Outdoor Coil guards of painted, galvanized-steel wire.

2.11 ROOF CURBS

- A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factoryinstalled wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - a. Materials: ASTM C 1071, Type I or II.
 - b. Thickness: 2 inches.
 - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- B. Curb Height: 20 inches.
- C. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site.
- 2.12 CAPACITIES AND CHARACTERISTICS: See schedule on drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
- B. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- C. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- D. Install piping adjacent to RTUs to allow service and maintenance.
 - 1. Gas Piping: Comply with applicable requirements in Section 23 11 23 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

- E. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 - 1. Install ducts to termination at top of roof curb.
 - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 - 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 23 33 00 "Air Duct Accessories."
 - 4. Install return-air duct continuously through roof structure.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Perform tests and inspections and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing.
- C. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.

3.3 CLEANING AND ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose.
- B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.4 BIDDING

- A. This equipment will be purchased by the mechanical contractor from Vemco Sales in Billings, MT 406-248-8373. Purchase price and equipment quote and equipment data sheets are attached to this spec section. Include this equipment price in your bid.
- B. Contractor will be responsible for formal submittals, ordering, coordination, receiving and installing the equipment, as well as specified warranty.

A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

END OF SECTION 23 74 13

SECTION 23 74 23.13 - PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes direct-fired heating and ventilating units.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
- B. Shop Drawings: For each type and configuration of indoor, direct-fired heating and ventilating unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.3 INFORMATIONAL SUBMITTALS

- A. Sample Warranty: For manufacturer's special warranty.
- B. Seismic Qualification Certificates: For outdoor, direct-fired heating and ventilating units, accessories, and components, from manufacturer.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.5 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Airedale
 - 2. CaptiveAire Systems.
 - 3. Greenheck.
 - 4. Modine
 - 5. Prior Approved equal.

2.2 SYSTEM DESCRIPTION

- A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, controls, and direct-fired gas burner to be installed on the roof of the building.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

- A. General Fabrication Requirements for Casings:
 - 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 - 2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.
 - 3. Factory Finish for Galvanized Steel Casings: Apply manufacturer's standard primer immediately after cleaning and pretreating.
 - 4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- B. Configuration: Horizontal unit with bottom discharge for installation.
- C. Cabinet: Aluminized- or galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
- D. Outer Casing: 0.0478-inch thick steel with heat-resistant, baked-enamel over-corrosion-resistanttreated surface in color to match fan section.
- E. Inner Casing:
 - 1. Burner Section Inner Casing: 0.0299-inch- thick steel.
 - 2. Double-wall casing with inner wall of perforated steel

- 3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on complete unit.
 - a. Thickness: 2 inches.
 - b. Insulation Adhesive: Comply with ASTM C 916, Type I.
 - c. Density: 3.0 lb/cu. ft..
 - d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.
- F. Inspection and Access Panels and Access Doors: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.

2.4 OUTDOOR-AIR INTAKE HOOD

- A. Type: Manufacturer's standard hood or louver.
- B. Materials: Match cabinet.
- C. Bird Screen: Comply with requirements in ASHRAE 62.1.
- D. Filter: Aluminum, 1 inch cleanable.
- E. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.5 ROOF CURBS

- A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factoryinstalled wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - 2. Thickness: 1-1/2 inches.
 - 3. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- B. Curb Height: 20 inches.

2.6 SUPPLY-AIR FAN

A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, pillow-block bearings. Bearing rating: L10 of 120,000 hours.

- B. Drive: V-belt drive with matching fan pulley and adjustable motor sheaves and belt assembly.
- C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with spring isolators.
- D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.

2.7 AIR FILTERS

- A. Comply with NFPA 90A.
- B. Cleanable Filters: Cleanable metal mesh.
 - 1. Thickness: 2 inches.
- C. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 6 according to ASHRAE 52.2.

2.8 DAMPERS

- A. Outdoor-Air: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.
- B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence.

2.9 DIRECT-FIRED GAS BURNER

- A. Description: Factory assembled, piped, and wired; and complying with ANSI Z21.47, "Gas-Fired Central Furnaces," and with NFPA 54, "National Fuel Gas Code."
 - 1. CSA Approval: Designed and certified by and bearing label of CSA.
 - 2. Burners: Stainless steel.
 - a. Gas Control Valve: Modulating.
 - b. Fuel: Natural gas.
 - c. Minimum Combustion Efficiency: 80 percent.
 - d. Ignition: Electronically controlled electric spark with flame sensor.
 - e. High-Altitude Kit: For Project elevation above sea level.
- B. Safety Controls:
 - 1. Vent Flow Verification: Differential pressure switch to verify open vent.
 - 2. Control Transformer: 24-V ac.
 - 3. High Limit: Thermal switch or fuse to stop burner.
 - 4. Gas Train: Regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, electronic-modulating temperature control valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
 - 6. Gas Manifold: Safety switches and controls complying with ANSI standards.

- 7. Airflow Proving Switch: Differential pressure switch senses correct airflow before energizing pilot.
- 8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if highlimit temperature is exceeded.
- 9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.10 CONTROLS

- A. Comply with requirements in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls" for control equipment and sequence of operation.
- B. Control Devices:
 - 1. Remote Thermostat: Adjustable room thermostat with temperature readout.
 - 2. Remote Setback Thermostat: Adjustable room thermostat without temperature readout.
 - 3. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - 4. Fire-Protection Thermostats: Fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature.
 - 5. Timers: Seven-day, programming-switch timer with synchronous-timing motor and seven-day dial; continuously charged, nickel-cadmium-battery-driven, eight-hour, power-failure carryover; multiple-switch trippers; minimum of two and maximum of eight signals per day with two normally open and two normally closed output contacts.
 - 6. Ionization-Type Smoke Detectors: 24-V dc, nominal; self-restoring; plug-in arrangement; integral visual-indicating light; sensitivity that can be tested and adjusted in place after installation; integral addressable module; remote controllability; responsive to both visible and invisible products of combustion; self-compensating for changes in environmental conditions.
- C. Fan Control: Interlock fan to start with exhaust fan(s) to which this heating and ventilating unit is associated for makeup air.
 - 1. Fan control shall be variable volume based on the hood system manufacturer's UL listed variable volume controller. Make up air unit volume shall follow similar variable volume control scheme. Provide all necessary interlocks, variable speed drives, controllers, etc. as needed for a complete and operational installation.
- D. Temperature Control: Operates gas valve to maintain supply-air temperature.
 - 1. Operates gas valve to maintain discharge-air temperature with factory-mounted sensor in blower outlet.
 - 2. Timer shall select remote setback thermostat to maintain space temperature at 60 deg F.
 - 3. Burner Control: Two or four steps of control using one or two burner sections in series.

2.11 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2.12 CAPACITIES AND CHARACTERISTICS

A. See Schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."
- B. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.
- C. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "Low-Slope Membrane Roofing Construction Details Manual," Illustration "Raised Curb Detail for Rooftop Air Handling Units and Ducts." Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00 "Roof Accessories." Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- D. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."
- E. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.
- F. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - 1. Gas Piping: Comply with requirements in Section 23 11 23 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainlesssteel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.
- B. Drain: Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.
- C. Duct Connections: Connect supply and return ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
- D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections with the assistance of a factory-authorized service representative.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 23 74 23.13

SECTION 23 82 33 - CONVECTORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes hydronic convectors.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include details and dimensions of custom-fabricated enclosures.
 - 4. Indicate location and size of each field connection.
 - 5. Indicate location and arrangement of piping valves and specialties.
 - 6. Indicate location and arrangement of integral controls.
 - 7. Include enclosure joints, corner pieces, access doors, and other accessories.
 - 8. Include diagrams for power, signal, and control wiring.
- C. Samples: For each exposed product and for each color and texture specified.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 HOT-WATER CONVECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Sterling
 - 2. Airdale.
- B. Heating Elements: Seamless copper tubing mechanically expanded into evenly spaced aluminum fins and rolled into cast-iron or brass headers with inlet/outlet and air vent; steel side plates and supports. Factory-pressure-test element at minimum 100 psig.

- 1. Front and Top Panel: Minimum 0.0677-inch- thick steel with exposed corners rounded; removable front panels with tamper-resistant fasteners braced and reinforced for stiffness.
- C. Wall-Mounted Back and End Panels: Minimum 0.0428-inch- thick steel.
- D. Floor-Mounted Pedestals: Conceal conduit for power and control wiring at maximum 36-inch spacing. Pedestal-mounted back panel shall be solid panel matching front panel.
- E. Support Brackets: Locate at maximum 36-inch spacing to support front panel and element.
- F. Insulation: 1/2-inch- thick, fibrous glass on inside of the back of the enclosure.
- G. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.
- H. Damper: Knob-operated internal damper.
- I. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches, integral with enclosure.
- J. Enclosure Style: Sloped top.
 - 1. Front Inlet Grille: Punched louver; painted to match enclosure.
 - 2. Front Inlet Grille: Extruded-aluminum linear bar grille; pencil-proof bar spacing.
 - a. Mill-finish aluminum.
 - b. Anodized finish, color as selected by Architect from manufacturer's standard colors.
 - c. Painted to match enclosure.
 - 3. Top Outlet Grille: Punched louver; painted to match enclosure.
 - a. Mill-finish aluminum.
 - b. Anodized finish, color as selected by Architect from manufacturer's standard colors.
 - c. Painted to match enclosure.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install convectors level and plumb.
- B. Install valves within reach of access door provided in enclosure.
- C. Install air-seal gasket between wall and recessed flanges or front cover of fully recessed unit.
- D. Install piping within pedestals for freestanding units.

3.2 CONNECTIONS

A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties". Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Connect hot-water convectors and components to piping according to Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties".
 - 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.
 - 2. Install shutoff valve on inlet; install strainer, steam trap, and shutoff valve on outlet.
- C. Install control valves as required by Section 23 09 23.11 "Control Valves."
- D. Install piping adjacent to convectors to allow service and maintenance.
- E. Ground electric convectors according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- F. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start convectors to confirm proper operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Convectors will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 23 82 33

SECTION 23 82 39.16 - PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes propeller unit heaters with hot-water coils.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings:

- 1. Include plans, elevations, sections, and details.
- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include location and size of each field connection.
- 4. Include details of anchorages and attachments to structure and to supported equipment.
- 5. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
- 6. Indicate location and arrangement of piping valves and specialties.
- 7. Wiring Diagrams: Power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer's shall be one of the following:
 - 1. Airedale.
 - 2. Sigma.
 - 3. Sterling.
 - 4. Modine.
 - 5. Trane.
 - 6. Other approved equal.

2.2 DESCRIPTION

- A. Assembly including casing, coil, fan, and motor in vertical and horizontal discharge configuration with adjustable discharge louvers.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a gualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

2.4 HOUSINGS

- A. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

2.5 COILS

- A. General Coil Requirements: Test and rate hot-water propeller unit-heater coils according to ASHRAE 33.
- B. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.

2.6 FAN AND MOTOR

- A. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.
- B. Motor: Permanently lubricated, multispeed. Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

2.7 CONTROLS

- A. Control Devices:
 - 1. Unit-mounted, variable fan-speed switch.
 - 2. DDC Wall-mounted thermostat (by others)

2.8 CAPACITIES AND CHARACTERISTICS

1. See Schedule on Drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install propeller unit heaters to comply with NFPA 90A.
- B. Install propeller unit heaters level and plumb.
- C. Suspend propeller unit heaters from structure with all-thread hanger rods and spring hangers.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 "Hydronic Piping Specialties."Section 15179 "Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Connect piping to propeller unit heater's factory, hot-water piping package. Install the piping package if shipped loose.
- D. Comply with safety requirements in UL 1995.
- E. Unless otherwise indicated, install union and gate or ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of propeller unit heater. Hydronic specialties are specified in Section 23 21 16 "Hydronic Piping Specialties." Section 15179 "Hydronic Piping Specialties."
- F. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- G. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

- 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 23 82 39.16

SECTION 23 85 00 - WOOD SHOP EXHAUST COLLECTOR

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Constant-air-volume, intermittent duty, shaker or pneumatic reverse pulse cleaning fabric dust collectors.
 - 2. Duct Silencer
 - 3. Abort Damper
 - 4. Spark Detection System
 - 5. Duct Fire Suppression System
 - 6. Blow Back Damper
 - 7. Dust Collection Accessories

1.2 SUBMITTALS

- A. Product Data: For each dust collection unit and respective accessory indicated.
 - 1. Unit dimensions (include unit base anchor bolt pattern) and weight.
 - 2. Cabinet material, metal thickness, finishes, and accessories.
 - 3. Fans:
 - a. Certified fan-performance curves, at project specific site altitude, with system operating conditions indicated.
 - b. Certified fan-sound power ratings.
 - c. Fan construction and accessories.
 - d. Motor ratings, electrical characteristics, and motor accessories.
 - 4. Filters with performance characteristics.
 - 5. Electrical wiring diagrams.
- B. Operation and maintenance data.
- C. Duct system and spark detection and extinguishing system design and shop drawings
 - 1. Provide abort damper, blow back damper and spark detection system and duct mounted suppression system design and layout in the project shop drawings. Show all required piping connections, electrical connections, ductwork, wiring, etc. Locate spark detectors and sprinkler heads for proper operation.

1.3 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. NFPA Compliance: Comply with NFPA 654 and NFPA 664 for design, fabrication, and installation of dust collection systems in wood working facilities. Comply with NFPA 69 Standard on Explosion Protection Systems and NFPA 68 Standard on Explosion Protection by Deflagration Venting.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. Comply with NFPA 70 and NFPA 496.

1.4 WARRANTY

- A. 10-year for the collector unit.
- B. Manufacture's standard warranty for the Explosion Isolation Valve and High Speed Abort Gate.

1.5 PREFABRICATED ELEMENTS

A. The characteristics described in the technical binders are those that are defined during tests made by the manufacturer, or in his name by an independent laboratory, stating the respect for existing rules and regulations.

1.6 PURPOSE

A. Shaker type dust collector are designed to collect, filter and store dust coming from wood working equipment. Manufacturer of collector must be certified to make, assemble and distribute industrial air purification equipment. Dust collector must be made in accordance with safety rules and regulations.

PART 2 - PRODUCT

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Air Filter Company
 - 2. AQC
 - 3. Donaldson Company, Inc.
 - 4. Camfil APC.

2.2 GENERAL DESCRIPTION

A. Furnish a completely packaged, fully assembled, pre-wired, inclusive of remote mounted control package, dust collector complying with the performance conditions listed in the mechanical drawings and schedules.

2.3 DUST COLLECTOR

A. Job installation and units will conform to NFPA 664.

- B. Collector:
 - 1. The collector shall be vertical cartridge type, designed for continuous operation and automatic reverse-pulse cleaning. Construction shall be 10-gage steel and heavier. Major sections shall be modular, bolted construction for maximum installation flexibility. Collector shall consist of:
 - a. Filter module with inlet baffle, two hoppers, drum cover assemblies, four drums (2 active, 2 storage) and legs.
 - b. Custom Electrical Panel with VFD and static controls, dust collector cleaning controls and solenoid heaters.
 - c. Fan with outlet damper and silencer.
 - d. Integrated Riga-Flo Flame-Front Arrestor and Safety Monitoring Filter Module.
- C. Filter Module and Hopper Section:
 - 1. Filter module section shall contain cartridge elements, cartridge access doors, reverse-pulse cleaning components, cartridge sealing hardware, dirty-air inlet, support frame and side walls. Filter module and hopper section shall maintain integrity to +/- 25" w.g.
 - 2. Cartridge access door shall incorporate "truck door" type operating hardware and require no tools when accessing cartridges. Door shall have "lock-out, tag-out" capability.
 - 3. Filter Module shall have a dirty air inlet on one side. Air inlet shall be a low-velocity (1,000fpm or less) and include a staggered-channel baffle to prevent large particles from impinging directly on the filters.
 - 4. Pulse cleaning components shall include blow pipes, internal piping, compressed air header, solenoid valves and diaphragm valves. The solenoid housing shall be fitted with a thermostatically-controlled, 1-amp heater (115V/1-phase) to prevent freeze-ups during cold weather.
 - 5. Collector shall have double-hoppers with discharge. Hopper wall angle shall be 60-degrees. Hopper outlets shall have drum-cover assemblies (DCA's) with latches for NFPA-compliance and 55-gallon drums. Support legs will allow a clearance to accommodate DCA's and drums.
 - 6. Collector shall be supplied with explosion venting suitable for dusts with K_{ST} values of up to 200.
 - 7. The collector parts shall be individually electrostatic powder painted and, once all parts are painted, the unit is fully assembled. There shall be no bare metal surfaces underneath any component. Color to be: Custom selected by architect.
 - 8. Filter cartridges shall be self-positioning and each row shall be locked and sealed in place by means of cam locking bars with handles at the door end to easily lock and unlock cartridges into place. Cam bars to be supported by heavy duty cast iron support clips.
 - 9. Cartridges will utilize a hot-melt bead between the pleats on clean-side of filter to maintain pleat spacing. Hot-melt beads will be spaced every inch along the entire height of cartridge. Each cartridge will have a minimum of 325 sq. ft. of filter media. Media shall be a blend of cellulose and 20% polyester and have an efficiency of at least 99.99% on 0.5 micron and larger particles. Filter media to be eXtreme Polytech laminant and treated to be flame retardant. The cartridges shall seal to filter module tube sheet by means of double gaskets of a continuous, seamless design.
- D. Cartridge over-bags shall be provided to act as a pre-filter to the primary cartridge protecting it from larger materials that tend to pack in a pleated cartridges. Over-bag to be 7 micron nylon mesh.
- E. Sawdust Collection System Control Box (Integrated Cleaning Controls with VFD and Static blower control):
 - 1. VFD provides complete control of the blower during and after start-up. This method uses a set of points and feedback from sensor to automatically determine the speed at which it needs to operate.
 - 2. The FDC Photohelic Controls with adjustments for pulse timing and duration, pulse pressure differential settings, auto fan-shutdown pulsing (with delay) and low and high static alarms. Display shall have digital and LED-analog displays of pressure differential, and LED display of differential cleaning setpoints as well as high and low alarm setpoints. Controls shall have a three-position

switch for "OFF", "ON DEMAND", and CONTINUOUS cleaning. FDC controller shall be suitable for 115V/1-phase/60-Hz operation.

- 3. Fan Motor shall be premium-efficiency TEFC. Fan wheel shall be backward-inclined. Design performance: rated at 3100 ft elevation.
- 4. Provide control panel with drum full indicator light. Provide lockout relay to shut down unit when drum is full.
- F. Integrated Flame-Front Arrestor and Safety Monitoring Filter Module (Deflagration Isolation device and Secondary Filters):
 - 1. Provide an integrated Riga-Flo safety filter factory-mounted to the top of the dust collector. The safety filter shall match the unit capacity. Unit will include filter access doors directly above the cartridge access doors with the same "truck door" type latching hardware. Riga-Flo filters shall utilize the same cam-bar locking system as the filter cartridges. Module shall meet NFPA standards 68, 654 and 664 to prevent both unintentional return of contaminated air to the facility and prevent transmission of energy from a fire or explosion to the building. Provide NFPA compliant testing information to meet the NFPA codes listed above.
- G. Interconnections:
 - 1. Installer shall locate the custom electrical control boxes inside the wood shop as indicated and supply it with 120V/1-ph/60hz power sufficient to operate cleaning controls and 480V/3-ph/60Hz suitable for powering the fan motor via dust collector control panel. The interconnections required between the custom control box (located inside) and the collector (located outside) will include:
 - 2. Seven (7) 12 gage wires (in conduit) to the collector solenoid box (4 for the compressed air solenoids, 1 for the solenoid heater, 1 common and 1 ground), by E.C.
 - 3. Four (4) ¹/₄" plastic UV resistant tubes. One (1) to the tap provided on the collector clean air plenum and one (1) to the tap provided on the collector dirty air plenum (static pressure reading across two filter banks).
 - 4. Wiring (in separate conduit) as required by electrical code suitable for operating the 3-phase fan motor.
 - 5. The piping contractor will be responsible for running 1" compressed air piping to collector air header (compressed air to be delivered at 30 SCFM at 90 psig).
 - 6. Wire two (2) 16 ga. wires from collector to control panel (connect each drum, typ of 2 drums). Provide wiring from drum full indicator and wire to control panel in building, by E.C.
 - 7. Wire GreCon spark detection/suppression system to fire alarm system (by E.C.).
 - 8. Wire GreCon spark detection control panel (16 ga. wires) to abort gate control panel (mounted on abort gate).
 - 9. Power (120V) to abort gate (by E.C.)
 - 10. Wire GreCon spark detection control panel to two (2) spark detectors (see plans for location).
 - 11. Provide 120 Volt power to "GreCon" fire suppression spark detection panel and to Abort Gate control panel.
 - 12. Wire from explosion flap to suppression control panel (by T.C.).
 - 13. Wire from explosion vent to dust collector control panel (by E.C.)
 - 14. Wire from smoke detector to suppression control panel (by E.C.)
 - 15. Pipe water from fire suppression system to duct suppression system (24 gpm at 60 psi residual required)
 - 16. All other wiring and piping required for proper operation or recommended by the manufacturer.

2.4 DUST COLLECTION SPARK DETECTION

A. Furnish and install a spark detection system with abort gate to serve the dust collector exhaust system. The spark detection shall be a micro-processor based system designed to detect sparks. System must be Factory Mutual Approved, and approval report number must be listed.

B. CONTROL CABINET:

- 1. Control Cabinet shall be a GreCon Control Console with Combi-Module Model CC-5004.
- 2. Control cabinet shall be fully microprocessor based with an event recorder capable of memory of at least 12,500 events. This memory shall be a circular memory so as to feed out the old and input the new when the memory is full. Control Console shall be capable of interfacing to a PC for event downloading using special software. Control Console shall also be capable of serving as a "master console" to additional extension cabinets for larger zone capacities.
- 3. Control cabinet shall have a user-friendly operating menu with critical operation parameters password protected for security.
- 4. The control cabinet shall receive the alarm signal from the spark sensor and immediately relay contacts. An LCD readout shall be provided to indicate the affected zone, date of the alarm, time of the alarm, the number of sparks, and whether the threshold setting of number of sparks has been exceeded.
- 5. The control cabinet shall be programmed to allow the extinguishing system to function without interrupting production.
- 6. The control cabinet shall provide a constant visual readout of extinguishments during a specific period of time. A battery back-up emergency power supply will be provided to assure continued operation upon main power failure.
- 7. The control cabinet shall have a NEMA 12 rating, non-ventilated and microprocessor based with solid-state circuitry. Terminal connections should have easy access, and all components should be plug-in type. The internal components should be easily removable and replaceable if maintenance is required.
- 8. The control cabinet shall provide powered terminals for an external horn or light device, summation alarm and trouble dry contacts, trouble contacts for system disabled.
- The control cabinet shall be either wall mounted or free standing, and require 120 volt AC power supply with all working voltages to be low voltage (DC) and a wire requirement of no more than three (3) wires for the sensors and two (2) wires for the abort damper. No AC voltage is to be run next to sensor or within the conduit.

C. SPARK SENSORS:

- 1. Spark sensors shall be two (2) duct mounted GreCon FM 1/8 Sensors with mounting adapters.
- 2. The standard spark sensors are to be located in ducts susceptible to sparks. Sensor shall be an infrared type sensor responsive to radiation in the 800 to 1,100 nanometer range with a mean temperature of 1,112 °F and operate in an air stream temperature not to exceed 158 °F.
- 3. Sensor shall be infrared type of the highest sensitivity electronic photo diode type to detect the tiniest of sparks.
- 4. Sensors shall be electronically stable with the longest possible time exposure of the spark signal to the photo diode, providing confirmation of signal. Shielded cable shall not be a requirement.
- 5. Spark detection sensors, etc., must not be responsive to VHF and UHF radio frequencies or other electrical interferences. Sensors must have the ability to detect individual sparks in an air stream up to 10,000 FPM.
- 6. No more than two (2) sensors shall be required in ducts up to 79" in diameter.
- 7. Spark sensors shall be mounted on the duct with a stainless steel adapter for ducts 9" diameter or larger. The adapter shall be installed from the outside of the pipe or duct with the use of a special tool kit to be supplied with the sensors and will mount in such a manner as to prevent build-up of materials on the lens cover.

D. ADDITION SYSTEM EQUIPMENT

- 1. The following equipment shall be provided with the dust collection spark:
 - a. Two (2) Kelex 1/8 Terminal Box with Mounting Plate

- b. One (1) Abort Gate for duct complete with weather hood and transitions. Abort gate shall close upon the second alarm activation (threshold exceeded) on the control console. (See 2.5-E)
- c. Set of Installation Tools for Mounting Adapters
- 2. Provide Plug Up Detector. Shut down unit upon alarm.
- 3. Provide Heat Detector. Shut down unit upon alarm.
- 4. Provide Broken Bag Detector. Shut down unit upon alarm.

2.5 OTHER REQUIREDACCESSORIES

- A. Four (4) 55-gallon drums shall be provided with the dust collector and shall match the exterior color of the dust collector.
- B. Factory installed magnehelic gage to read the pressure across the main filter cartridge
- C. Provide Bindicator Model Roto-bin-bindicator Type 1 RA-H-1 or equal level detectors for installation in each respective hopper. Electrical contractor is responsible for providing and installing all line voltage wiring and respective alarm device for each level detector.
- D. Explosion Isolation Valve to be installed on the dirty air inlet:
 - 1. Camfil Stinger (or equal) Explosion Isolation Valve.
 - a. NFPA 69-2014, 654 and 664 continuous dust compliant.
 - 2. Refer to the schedules on the mechanical drawings for additional information.
- E. High Speed Abort Gate:
 - 1. Imperial Systems (or equal) high speed Abort Gate
 - a. NFPA 664 compliant.
 - b. 120 VAC electrical
 - c. Reversible outlet cowl with bird screen
 - d. Reversible reset handles
 - e. Powered Reset system
 - 2. Purpose: Abort gates/dampers are designed to divert the pressure and fireball from a possible explosion coming from a dust collector system. The system is activated when a spark is detected by the spark detection and extinguishing system.
- F. Slide gates at each woodworking equipment.
- G. Refer to schedules on mechanical drawings for any additional information and accessories.

3.1 INSTALLATION

- A. Assembly dust collection unit per the manufacture's installation guidelines.
- B. Install in accordance with manufacturer's Installation & Maintenance instructions.

- C. Use all factory provided lifting lugs to rig the units or modules. Ensure that spreader bars are used to prevent damaging the cabinets.
- D. Lift modules in an upright position.
- E. Level unit horizontally and vertically, using steel shims under legs where required. Shims shall have a corrosion resistant coating.
- F. Support collector silencer and transition independently from the dust collector.
- G. Contractor shall protect the dust collector inlet and outlet during construction to prevent construction debris from entering the collector prior to making duct connection to the unit. Do not operate fan system until filters are in place.
- H. Connect exhaust and return ducts to dust collection unit, flexible connections shall not be used.
- I. Install level detectors in each dust collector hopper.
- J. Perform preliminary start-up unit check per the dust collector manufacture's installation guidelines.
- K. Check fan motors for rotation and amp draw for each phase. Record information on the start-up data sheets.
- L. Abort Damper Installation:
 - Abort gates/dampers are designed to be installed exterior of buildings and facilities. They are to be installed on the ductwork between the building and the dust collector or between the dust collector fan and the exterior wall of the building. Due to weight, exterior support and braces are required. DO NOT COUNT ON DUCTWORK ALONE TO SUPPORT WEIGHT OF ABORT GATE/DAMPER.
 - 2. Installer has to use proper fasteners as per flanges supplied with gate and ensure the ductwork attached to the gate is properly sealed with butyl strips or any other weather resistant duct sealer.
 - 3. The diverted airflow outlet must be free of obstacles within a 20' radius and not be directly in front of trees, bushes or parts of the building.
 - 4. Power:
 - a. Power supply has to be performed by a qualified electrician and as per plan included.
 - b. Red light ON: abort damper is down exhausting air in the atmosphere
 - c. Yellow light ON: Power ON, normal function
 - d. Battery: ensures protection in case of power failure
- 3.2 Factory Start up and Verification:
 - 1. Factory trained technicians shall inspect and commission all components including:
 - a. Dust Collection System
 - b. Spark Detection System
 - c. Fire Suppression System

END OF SECTION 23 85 00

SECTION 23 85 23 - DUST COLLECTOR DUCTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Refer to Division 23 Section "Metal Ducts" for duct requirements not related to dust collector ductwork requirements.
- B. Section Includes:
 - 1. Rectangular ducts and fittings.
 - 2. Round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Sealants and gaskets.
 - 5. Hangers and supports.
- C. Related Sections:
 - 1. Division 23 Section "Testing, Adjusting, and Balancing" for testing, adjusting, and balancing requirements for metal ducts.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible", NFPA 664 "Processes Operations and Special Systems", NFPA 654 "Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particle Solids," and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports for horizontal ductwork serving the dust collection system shall meet NFPA 664 requirements for supporting the weight of the duct system plus the weight of the duct half filled with water or material being conveyed, whichever has the high density. Duct hangers and supports shall withstand the effects of gravity loads (duct weight plus water weight for horizontal dust collector ductwork) and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible".
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Detailed shop drawings for dust collector exhaust air and return air (clean air back to the woodshop) ductwork.

1.4 QUALITY ASSURANCE

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1-2004, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-Up."
- B. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1-2004, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

- 2.1 CLAMP-TOGETHER ROUND DUCTS AND FITTINGS
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AQC
 - 2. Nordfab Ducting
 - 3. Spiral Tech
 - 4. Torit.
 - B. General Fabrication Requirements:
 - 1. Ductwork shall be of a clamp- together design using a die-formed, rolled edge which is then joined together by a single lever clamp of similar material unless otherwise noted. All clamp together ducting shall be of continuous laser welded construction along the longitudinal seam of the rolled form duct. All connections shall have PVC seal in clamp for standard installs.
 - 2. Clamp together ductwork shall use flanged duct connections with gasket seals where noted in the duct schedule.
 - 3. All clamp together ductwork shall maintain electrical continuity through the respective clamp together joint and shall not require the use of grounding each section of duct on each side of the respective joint.
 - 4. Duct material sheet blanks shall be five feet long, which is then rolled and fused together with a laser weld process along the longitudinal seam.
 - 5. The ends of the duct shall be pressed in a die to from a rolled bead on each end of the duct. This rolled end is used for clamping components together as well as reinforcement every 5 feet.
 - Straight duct and other connecting components to be constructed of galvanized sheets produced by the continuous galvanizing process which conforms to ASTM-A-527, and commercial quality ASTM A-527. Galvanized sheeting shall be produced with a minimum spangle.
 - 7. Ducting constructed of stainless steel to be 304 2B finish (2B finish is annealed, pickled and bright cold rolled).

2.2 EXPLOSION ISOLATION VAVLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting
- B. Designed in accordance with NFPA standards to prevent the transmission of energy from a potential explosion in the dust collector, migrating back into the building.
A&E # 13048.2 INTEGRUS # 21438.00 DECEMBER 18, 2015

2.3 DUST COLLECTION FLOOR SWEEPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting, Part Number 3248
 - 2. Donaldson Torit
- B. Galvanized sheet metal construction with closing door.

2.4 DIVERTER VALVES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting
 - 2. Donaldson Torit
- B. Electrical/pneumatic automatic diverter valve.
- C. Electrical: 120 volt
- D. Pneumatic: 75 psi minimum.

2.5 MANUAL BLAST GATES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting
 - 2. Donaldson Torit
- B. Manual blast gate with handle and no set screw shall be used to serve floor sweeps and bench sweeps. All other manual blast gates shall have a set screw.

2.6 FLEXIBLE RUBBER HOSE WITH STEEL COIL

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting, RFH Hose
 - 2. Donaldson Torit
- B. Constructed of thermoplastic rubber and reinforced with wire helix.
- C. Provide hose end adapters as specified on the mechanical drawings.

2.7 VIBRATION ISOLATOR

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Nordfab Ducting, Part Number 3206
 - 2. Donaldson Torit

2.8 RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for staticpressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.9 NON-CLAMP-TOGETHER ROUND DUCT & FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
 - f. Other qualified fabricator subject to compliance with requirements.
 - g. Donaldson Torit
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Transverse Joints - Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger Than 90 inches in diameter with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.10 SHEET METAL MATERIALS FOR RECTANGULAR AND NON-CLAMP-TOGETHER ROUND DUCT & FITTINGS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.11 SEALANT AND GASKETS FOR RECTANGULAR AND NON-CLAMP-TOGETHER ROUND DUCT & FITTINGS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.

- 1. General: Single-component, acid-curing, silicone, elastomeric.
- 2. Type: S.
- 3. Grade: NS.
- 4. Class: 25.
- 5. Use: O.
- 6. For indoor applications, use sealant that has a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.12 PVC PIPE AND FITTINGS

- A. PVC, Schedule 40 Pipe: ASTM D 1785.
 - 1. PVC, Schedule 40 Socket Fittings: ASTM D 2466.Solvent Cement and Adhesive Primer:
 - a. Use PVC solvent cement that has a VOC content of 510 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - b. Use adhesive primer that has a VOC content of 550 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.13 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade A or B, Schedule 40, galvanized. Include ends matching joining method.
 - 1. Drainage Fittings: ASME B16.12, galvanized, threaded, cast-iron drainage pattern.
 - 2. Pressure Fittings:
 - a. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M or ASTM A 106, Schedule 40, galvanized, seamless steel pipe. Include ends matching joining method.
 - b. Malleable-Iron Unions: ASME B16.39; Class 150; hexagonal-stock body with ball-andsocket, metal-to-metal, bronze seating surface; and female threaded ends.
 - c. Gray-Iron, Threaded Fittings: ASME B16.4, Class 125, galvanized, standard pattern.
 - d. Cast-Iron Flanges: ASME B16.1, Class 125.
- B. Cast-Iron, Flanged Fittings: ASME B16.1, Class 125, galvanized.

2.14 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - e. Lewis and Lambert.
 - f. Donaldson Torit
- 2. Maximum Thermal Conductivity:
 - a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
- 3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
- 4. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, use adhesive that has a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch- thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-19, "Flexible Duct Liner Installation."
 - 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 - 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 - 3. Butt transverse joints without gaps, and coat joint with adhesive.
 - 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 - 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 - 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm.
 - 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 - 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.

- c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.
- Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.
 - a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.
- 10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.15 HANGERS AND SUPPORTS

- A. All hangers and supports for serving the dust collection exhaust air ductwork shall be sized to support the weight of the ductwork plus the weight of water to fill the duct half full with water. Refer to the mechanical drawings for schedule of water weight per linear foot of duct.
- B. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- C. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- D. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible,".
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
 - 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install explosion isolation valve not less than 7' and no more than 32' upstream of the dust collector inlet. Install explosion isolation valve per the manufacture's installation guidelines.

- C. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- D. Install vibration isolator at each equipment connection as noted on the mechanical drawings.
- E. Install diverter valves where indicated on the drawings per the manufacture's installation guidelines.
- F. Install round ducts in maximum practical lengths.
 - 1. Install spiral round duct downstream of the abort gate.
- G. Install ducts with fewest possible joints.
- H. Install clamp together ductwork per the clamp together ductwork manufacture's guidelines.
- I. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- J. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- K. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- L. Install ducts with a clearance of 1 inch.
- M. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- N. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 23 Section "Air Duct Accessories" for fire and smoke dampers.
- O. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines."
- P. Install an electrical ground across each section of conductive duct where joint between ducts is nonconductive. Coordinate installation with the electrical contractor.
- Q. Install vacuum pump ducting per the Owner provided CNC router and vacuum pump manufacture's guidelines. Install Owner provided filter between Owner provided CNC router and vacuum pump.
- R. Install PVC pipe according to ASTM F 645.
- S. Support all ductwork.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use twopart tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.
- F. All exposed round duct shall be spiral seamed unless noted to be clamp together ductwork.
- G. Support all ductwork.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 4-1, "Rectangular Duct Hangers Minimum Size," and Table 4-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- G. Install schedule 40 steel pipe sleeve for vacuum pump ducting penetrations through exterior wall and concrete slab penetrations. Seal exterior wall penetrations water tight.

3.5 START UP

A. Air Balance: Comply with requirements in Division 23 Section "Testing, Adjusting, and Balancing for HVAC."

3.6 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:
- B. Exhaust Ducts:
 - 1. Exhaust Air Ducts Connected to Dust Collector:
 - a. Round ductwork shall be clamp-together round duct and fittings. Flanged connections with gasket seals shall be used for all exterior exhaust air ductwork.
 - b. 30^o takeoffs shall be used in the dust collector exhaust ductwork.
 - c. A five foot section of exhaust duct shall be stainless steel where the spark detection and extinguishment system nozzle shall be located, refer to the mechanical drawings.
 - d. Pressure Class: Negative 15-inch wg.
 - e. Minimum SMACNA Seal Class: C.
- C. Return Ducts:
 - 1. Return Air (Clean Air) Ducts Connected to Dust Collector:
 - a. Round ductwork shall be clamp-together round duct and fittings between dust collector and abort gate. Flanged duct connections with gasket seals shall be used for all exterior return air ductwork.
 - b. Round and oval ductwork downstream of abort gate shall be spiral seam construction. Flanged duct connections with gasket seals shall be used for all return air ductwork.
 - c. Pressure Class: Positive 3-inch wg.
 - d. Minimum SMACNA Seal Class: C.
- D. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
- E. Liner:
 - 1. Round and Oval Return Air Ductwork Downstream of Abort Gate AG-1: Fibrous glass, Type I, 1 inch thick. All return air round and oval ductwork downstream of abort gate AG-1 shall have a perforated inner liner.
- F. Transfer Ducts: Fibrous glass, Type I, 1 inch thick
- G. Elbow Configuration:
 - 1. Turning vanes shall not be used in exhaust air ductwork connected to the dust collector. Radius elbows shall be used for all rectangular elbows in exhaust air ductwork connected to the dust collector.
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."

- a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
- b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 3. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-3, "Vanes and Vane Runners," and Figure 2-4, "Vane Support in Elbows."
- 4. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-3, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam or Welded.+

END OF SECTION 23 85 23